Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Testing of a Miniature Loop Heat Pipe Using a Thermal Electrical Cooler for Temperature Control

2004-07-19
2004-01-2505
This paper describes the design and testing of a miniature loop heat pipe (LHP) having a 7 mm outer diameter (O.D.) evaporator with an integral compensation chamber (CC). The vapor line and liquid line are made of 1.59mm O.D. stainless steel tubing. A thermoelectric (TEC) is installed on the CC and the hot side of the TEC is connected to the evaporator through a copper strap. By changing the direction of the electric current provided by a bi-polar power supply, the TEC can heat or cool the CC. Tests performed in the laboratory included start-up, power cycle, sink temperature cycle, and CC temperature control with the test article being placed in horizontal and vertical positions. The LHP demonstrated very robust operation in all tests where the heat load varied between 0.5W and 140W, and the sink temperature varied between 243K and 293K. The heat leak from the evaporator to the CC was extremely small.
Technical Paper

Ground Tests of Capillary Pumped Loop (CAPL 3) Flight Experiment

1998-07-13
981812
The success of CAPL 2 flight experiment has stirred many interests in using capillary pumped loop (CPL) devices for spacecraft thermal control. With only one evaporator in the loop, CAPL 2 was considered a point design for the Earth Observing System (EOS-AM). To realize the full benefits of CPLs, a reliable system with multiple evaporators must be developed and successfully demonstrated in space. The Capillary Pumped Loop (CAPL 3) Flight Experiment was designed to flight demonstrate a multiple evaporator CPL in a space environment. New hardware and concepts were developed for CAPL 3 to enable reliable start-up, constant conductance operation, and heat load sharing. A rigorous ground test program was developed and extensive characterization tests were conducted. All performance requirements were met, and the loop demonstrated very reliable operation.
Technical Paper

Fiber Optic Cable Assemblies for Space Flight Applications: Issues and Remedies

1997-10-01
975592
The following is the first in a series of white papers which will be issued as a result of a task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. These papers will address that need, providing information and “lessons learned” that are being collected in the process of procuring, testing and specifying the final assemblies. This installment covers information on optical fiber, coatings, cable components, design guidelines and limitations, radiation and reliability.
Technical Paper

Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes

2000-07-10
2000-01-2406
In this paper, experimental work performed on a breadboard Loop Heat Pipe (LHP) is presented. The test article was built by DCI for the Geoscience Laser Altimeter System (GLAS) instrument on the ICESat spacecraft. The thermal system requirements of GLAS have shown that ammonia cannot be used as the working fluid in this LHP because GLAS radiators could cool to well below the freezing point of ammonia. As a result, propylene was proposed as an alternative LHP working fluid since it has a lower freezing point than ammonia. Both working fluids were tested in the same LHP following a similar test plan in ambient conditions. The thermal performance characteristics of ammonia and propylene LHP's were then compared. In general, the propylene LHP required slightly less startup superheat and less control heater power than the ammonia LHP. The thermal conductance values for the propylene LHP were also lower than the ammonia LHP. Later, the propylene LHP was tested in a thermal vacuum chamber.
Technical Paper

A Parametric Study of Performance Characteristics of Loop Heat Pipes

1999-07-12
1999-01-2006
A parametric study of performance characteristics of a Loop Heat Pipe (LHP) is presented. A mathematical model, based on the steady-state energy conservation equations, is used. The calculations are performed by varying the operation conditions (heat load, sink and ambient temperatures, and elevation) and the LHP design parameters (working fluid, transport length size, external thermal conductance of the condenser and wick properties). The results are illustrated on LHP performance curves (saturation temperature as a function of applied power). All the results are compared with a baseline configuration to analyze the effects of different parameters. Operating limits due to various constraints such as heat transport limit, capillary pressure limit and the vapor pressure limit are discussed.
X