Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
Technical Paper

NRC’s ICE-MACR 2018-2023: What Has Been Learned So Far

2023-06-15
2023-01-1377
The Ice Crystal Environment Modular Axial Compressor Rig (ICE-MACR) was developed by the National Research Council of Canada (NRC) with support from the Federal Aviation Administration (FAA) in response to the need to understand ice crystal icing of aircraft engines at high altitudes. Icing wind tunnel tests on static hardware lack some of the real physics of turbofan compressor such as centrifuging and fracturing of particles, and melting of particles due to compression heating, heat transfer through a casing wall, as well as annular geometry effects. Since the commissioning of ICE-MACR in 2019 new insights have been gained on the physics behind ice crystal icing of turbofan engines. Additionally, the results of various test campaigns have been used to validate engine ice accretion numerical codes. This paper summarizes the key insights into ICI of turbofans gained from the ICE-MACR to date.
Journal Article

Ice Crystal Icing Test Design and Execution for the ALF502 Vane Segment in the NRC RATFac Cascade Rig

2019-06-10
2019-01-1925
Understanding the behaviour of ice crystal ice (ICI) accretion and shedding inside an aircraft engine is important for safe and reliable engine operation in flight and to meet new airworthiness regulations. A significant advancement in this understanding came from two engine test campaigns carried out on a Honeywell ALF502 turbofan, led by the Ice Crystal Consortium (ICC) and NASA. However, it is often desirable to conduct smaller scale component level tests to both decrease costs and increase the amount of data obtainable, given a component is more accessible when removed from an engine and therefore easier to instrument and observe. That was the purpose of the work discussed in this paper where a segment of an ALF502 low pressure exit guide vane ring was installed in the NRC RATFac ICI cascade rig. The existing cascade rig was modified to accommodate the vane segment which allowed for the instrumentation already available on the rig to be used to characterize the ICI environment.
Technical Paper

Gaseous and Particle Emissions from a Turbo-Jet Engine Operating on Alternative Fuels at Simulated Altitudes

2011-10-18
2011-01-2597
Gaseous and particle emission assessments on a 1.15 kN-thrust turbojet engine were conducted at five altitudes in an altitude chamber with Jet A-1 fuel, pure Fischer Tropsch (FT), and two mixed fuels of JP-8 with FT or Camelina-based hydro-processed jet fuels. In general, lower emissions in CO₂, NOx, and particle number as well as higher emissions in CO and THC were observed at higher altitudes compared to lower altitudes. These observations, which were similar for all test fuels, were attributed to the reduced combustion efficiency and temperature at higher altitudes. The use of alternative fuels resulted in lower CO₂ emissions, ranging from 0.7% to 1.7% for 50% to 100% synthetic fuel in the fuel mixture at various altitudes. In terms of CO, the use of 100% FT fuel resulted in CO reduction up to 9.7% at 1525 m altitude and up to 5.9% at 9145 m altitude.
Technical Paper

Development and Application of an Impedance-Based Instrument for Measuring the Liquid Fraction and Thickness of Ice Crystal Accretions

2015-06-15
2015-01-2134
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially causing performance loss, damage and/or flameout. Recent research into this ice crystal icing (ICI) phenomenon conducted at the National Research Council of Canada suggests that the liquid water content vliq of an accretion significantly affects the accretion's susceptibility to erosion by ice crystals, and therefore accretion growth. This paper describes the development and application of an instrument for measuring vliq, potentially providing a method for correlating erosion behavior (e.g. as ductile or brittle) and properties. The instrument measures the complex admittance Y* of a mixed-phase deposit bridging a pair of electrodes, which is modeled as a resistor and capacitor in parallel, and calculates the deposit's relative permittivity εr from the capacitance.
Journal Article

Characterization of the Ultrafine and Black Carbon Emissions from Different Aviation Alternative Fuels

2015-09-15
2015-01-2562
This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
X