Refine Your Search

Topic

Author

Search Results

Technical Paper

Water Recovery of Reverse Osmosis Brine and Pretreated Urine with an Air Evaporation Subsystem

1999-07-12
1999-01-1992
This paper focuses on an Air Evaporation Subsystem component of the Water Recovery System being developed at the Johnson Space Center in the Crew and Thermal Systems Division. Specifically, the focus is on the design and testing of the next generation of Air Evaporation Subsystem Engineering Development Unit built after the Lunar-Mars Life Support Test Project Phase III 91day test. The primary objective of testing this next generation Air Evaporation Subsystem was to demonstrate its performance as a Reverse Osmosis brine treatment subsystem by looking at the condensate quality produced from Reverse Osmosis brine and the power required to process the Reverse Osmosis brine. The secondary objectives were to develop optimal operating conditions, to optimize the use of a consumable wick and to retain as much operational data as possible through instrumentation.
Technical Paper

Updating the Tools Used to Estimate Space Radiation Exposures for Operations: Codes, Models, and Interfaces

2002-07-15
2002-01-2457
In order to estimate the exposure to a crew in space, there are three essential steps to be performed: first, the ambient radiation environment at the vehicle must be characterized; second, the mass distribution properties of the vehicle, including the crewmembers themselves must be developed, and third a model of the interactions of space radiations with matter must be employed in order to characterize the radiation field at the dose point of interest. The Space Radiation Analysis Group (SRAG) at the NASA, Johnson Space Center carries the primary responsibility for the operational radiation protection support function associated with manned space flight. In order to provide support during the various planning, execution, and analysis/recording phase activities associated with a given mission, tools have been developed to allow rapid, repeatable calculations of exposure on orbit.
Technical Paper

Thermal Analysis of Compressible Gaseous Nitrogen Flow of X-38 Pressure Control System for First Mission Phase

2001-07-09
2001-01-2433
A SINDA/FLUINT model was developed for performing the thermal analysis of the compressible gaseous nitrogen (GN2) flow of X-38 pressure control system (PCS). The purpose of this analysis is to predict the thermal performance of X-38 PCS for the first mission phase, and to ensure that the GN2 pressure in tank stays above 1000 psi and the GN2 temperature in tank stays above −65°F during a real mission phase. The model simulations of the X-38 PCS have been conducted with the flowrates of the first mission phase for different ambient and GN2 temperatures with/without heating the GN2 tank wall. The predicted results show that the GN2 pressures and temperatures fulfill the requirements and limitations of the X-38 pressure control system without heating the GN2 tank wall. The electrical heaters on the GN2 tank exterior may be eliminated.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The Advanced Life Support Research and Technology Development Metric for Government Fiscal Year 2002

2003-07-07
2003-01-2632
The Advanced Life Support Research and Technology Development Metric, or Metric, for Government Fiscal Year 2002 provides a measure of the equivalent system mass for a life support system using the “best” available advanced technologies compared to the equivalent system mass for a life support system using technologies from International Space Station. The present paper details the assumed life support system configurations and algorithm used to compute the Metric. Additionally, various peripheral issues of importance are mentioned.
Technical Paper

The AMS-02 Thermal Control System Design

2003-07-07
2003-01-2585
This paper reports on the Thermal Control System (TCS) of the AMS-02 (Alpha Magnetic Spectrometer). AMS-02 will be installed on the International Space Station (ISS) Starboard segment of the Truss in 2005, where it will acquire data for at least three years. The AMS-02 payload has a mass of about 6700 kg, a power budget of 2kW and consists of 5 different instruments, with their associated electronic equipment. Analytical integration of the AMS-02 thermal mathematical model is described in the paper, together with the main thermal design features. Stringent temperature stability requirements have been satisfied, providing a stable thermal environment that allows for easier calibration of the detectors. The overall thermal design uses a combination of standard and innovative concepts to fit specific instruments needs.
Technical Paper

Solid Waste Management Requirements Definition for Advanced Life Support Missions – Preliminary Results

2002-07-15
2002-01-2478
Solid Waste Management (SWM) requirements need to be defined prior to determining what technologies should be developed by the Advanced Life Support (ALS) Project. Since future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architectures outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions.
Technical Paper

Revised Solid Waste Model for Mars Reference Missions

2002-07-15
2002-01-2522
A key component of an Advanced Life Support (ALS) system is the solid waste handling system. One of the most important data sets for determining what solid waste handling technologies are needed is a solid waste model. A preliminary solid waste model based on a six-person crew was developed prior to the 2000 Solid Waste Processing and Resource Recovery (SWPRR) workshop. After the workshop, comments from the ALS community helped refine the model. Refinements included better estimates of both inedible plant biomass and packaging materials. Estimates for Extravehicular Mobility Unit (EMU) waste, water processor brine solution, as well as the water contents for various solid wastes were included in the model refinement efforts. The wastes were re-categorized and the dry wastes were separated from wet wastes. This paper details the revised model as of the end of 2001. The packaging materials, as well as the biomass wastes, vary significantly between different proposed Mars missions.
Technical Paper

Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

2002-07-15
2002-01-2479
Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of mission requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements and planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup - System Testing

2002-07-15
2002-01-2401
NASA Ames Research Center and Lawrence Berkeley National lab have completed a three-year joint NRA research project on the use of waste biomass to make a gaseous contaminant removal system. The objective of the research was to produce activated carbon from life support wastes and to use the activated carbon to adsorb and remove incineration flue gas contaminants such as NOx. Inedible biomass waste from food production was the primary waste considered for conversion to activated carbon. Previous research at NASA Ames has demonstrated the adsorption of both NOx and SO2 on activated carbon made from biomass and the subsequent conversion of adsorbed NOx to nitrogen and SO2 to sulfur. This paper presents the results testing the whole process system consisting of making, using, and regenerating activated carbon with relevant feed from an actual incinerator. Factors regarding carbon preparation, adsorption and regeneration are addressed.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Optimization of Waste Derived Elemental Use to Meet Demands of Crop Production of Selected BIO-Plex Crops

2000-07-10
2000-01-2285
In this paper we have developed a unique approach to providing the elements required for crop production in a steady-state condition, which is essential for Space habitats. The approach takes into consideration human elemental requirements and crop requirements for healthy growth and develops a method for the calculation of the rates of nutrient uptake for the different elements for different crops. The uptake rates can be used to calculate the rate of nutrient supply required in the hydroponic solution. This approach ensures that crops produced will not have excessive levels of elements that may be harmful to humans. It also provides an opportunity to optimize the processes of crop production and waste processing through highly controlled feed rates.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

International Space Station (ISS) Automated Safing Responses to Fire Emergencies

2003-07-07
2003-01-2595
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responses to emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions during the emergencies. This paper focuses on the ISS response to fire emergencies. It includes the integrated ISS automatic vehicle response and crew actions for fire. Philosophies covered include fire detection, fire response, and post-fire atmosphere recovery. Current responses and crew actions are discussed for the existing vehicle configuration on-orbit. This includes modules in the assembly sequence up to and including the Docking Compartment (DC1). Possible future improvements to the fire emergency responses are also described.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Update of Development Activities at ARC

2001-07-09
2001-01-2344
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. Various factors are involved in the design of an optimum fluidized bed incinerator for inedible biomass. The factors include variability of moisture in the biomass, the ash content, and the amount of fuel nitrogen in the biomass. The crop mixture in the waste will vary; consequently the nature of the waste, the nitrogen content, and the biomass heating values will vary as well. Variation in feed will result in variation in the amount of contaminants such as nitrogen oxides that are produced in the combustion part of the incinerator. The incinerator must be robust enough to handle this variability. Research at NASA Ames Research Center using the fluidized bed incinerator has yielded valuable data on system parameters and variables.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Developmental Efforts at NASA Ames Research Center

2000-07-10
2000-01-2282
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. An incinerator was used to recover and recycle part of the waste produced during the Early Human Testing Initiative Phase 3 (EHTI 3) at Johnson Space Center. The fluidized bed incinerator developed for the EHTI testing was a joint initiative between Ames Research Center, University of Utah and Johnson Space Center. Though in no way an optimized system at that time, the fluidized bed combustor fulfilled the basic requirements of a resource recovery system. Valuable data was generated and problem areas, technology development issues and future research directions were identified during the EHTI testing.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

ISS ECLS System Analysis Software Tools - An Overview and Assessment

2002-07-15
2002-01-2343
There have been many software programs that have provided simulations for the performance and operation of the Environmental Control and Life Support Subsystems (ECLSS) in the International Space Station (ISS) and in the Space Shuttle. These programs have been applied for purposes in system analysis, flight analysis, and ECLSS studies. Flight and system analysis tasks are deemed important. Therefore, more manpower and resources added for such work is considered beneficial. System analysis covers design and trouble-shooting, the validation of Flight Rules, and the contingency analysis. During the engineering design phase, ECLSS modelers predict the performance and interaction of units in a process train. Simulation results can be useful in estimating equipment sizes and costs. This article has also used two examples to illustrate that many Flight Rules need to be validated using properly selected integrated programs.
Technical Paper

Human-Centric Teaming in a Multi-Agent EVA Assembly Task

2004-07-19
2004-01-2485
NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.
X