Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Water Film Weber Number in Glaze Icing Scaling

2007-09-24
2007-01-3295
Surface water film dynamics is recognized as playing an important role in the glaze ice accretion process. The solution, in general scaling problems, requires the match of all the relevant non-dimensional parameters to take place individually. However, in water film dynamics similarity, we encounter that is not possible for both Reynolds and Weber numbers to be matched simultaneously, and the strict individual parameter similarity condition has to be relaxed and combination of parameters accepted as a reasonable compromise. In this paper, a film Weber number will be defined and then proposed as a similarity parameter along with the non-dimensional film thickness as well as others that have been long recognized as well established, to form the set of equations that determine the scaled variables in terms of the reference ones.
Technical Paper

Overview of Icing Physics Relevant to Scaling

2003-06-16
2003-01-2130
An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading-edge heat balance have also been used for convenience.
X