Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Structurally Integrated Location and Reference Features in the Assembly of Large Aerospace Structures

2000-09-19
2000-01-3024
This paper considers rhe use of structurally integrated location and reference features to simplify and to reduce the lead time and costs of assembling large aerospace structures. The location features are selected to fulfil a specific function based on restraint requirements and the necessary degree of precision to ensure that the Product Key Characteristics are achieved. Analysis of how to use structurally integrated location and reference features, indicates that their introduction will not be successful unless there is an integrated design team with a thorough understanding of the manufacturing processes and capabilities, the assembly processes, and the enabling technologies. The assembly of a single nose rib to a section of front spar is used as a typical assembly problem. Three alternative assembly processes are briefly described and used to illustrate the need for the industry to adopt an holistic approach to the design of aerostructure.
Research Report

Unsettled Issues on Human-Robot Collaboration and Automation in Aerospace Manufacturing

2020-11-30
EPR2020024
This SAE EDGE™ Research Report builds a comprehensive picture of the current state-of-the-art of human-robot applications, identifying key issues to unlock the technology’s potential. It brings together views of recognized thought leaders to understand and deconstruct the myths and realities of human- robot collaboration, and how it could eventually have the impact envisaged by many. Current thinking suggests that the emerging technology of human-robot collaboration provides an ideal solution, combining the flexibility and skill of human operators with the precision, repeatability, and reliability of robots. Yet, the topic tends to generate intense reactions ranging from a “brave new future” for aircraft manufacturing and assembly, to workers living in fear of a robot invasion and lost jobs. It is widely acknowledged that the application of robotics and automation in aerospace manufacturing is significantly lower than might be expected.
Technical Paper

Trajectory Optimization of Airliners to Minimize Environmental Impact

2015-09-15
2015-01-2400
With the rapid growth in passenger transportation through aviation projected to continue into the future, it is incumbent on aerospace engineers to seek ways to reduce the negative impact of airliner operation on the environment. Key metrics to address include noise, fuel consumption, Carbon Dioxide and Nitrous Oxide emissions, and contrail formation. The research presented in this paper generates new aircraft trajectories to reduce these metrics, and compares them with typical scheduled airline operated flights. Results and analysis of test cases on trajectory optimization are presented using an in-house aircraft trajectory optimization framework created under the European Clean Sky Joint Technology Initiative, Systems for Green Operation Integrated Technology Demonstrator. The software tool comprises an optimizer core and relatively high fidelity models of the aircraft's flight path performance, air traffic control constraints, propulsion and other systems.
Technical Paper

The Development of Automated Processes For The Manufacture of Cost-Effective Composite Wing-Boxes

1998-06-02
981839
The manufacturing cost of composite aerostructures is considerably higher than that of equivalent light-alloy ones. There are several reasons for this, but the transfer of the existing technology from military to civil aviation is identified as a major problem. Neither the designs, nor the methods of manufacture, are considered cost-effective when applied to very large, commercially competitive, structures. This problem was among those addressed within a multi-disciplinary, concurrent engineering project sponsored by BAe Airbus and the UK DTI. During the four year programme, alternative manufacturing technology was developed, and Pilot-plant equipment built. The Pilot-plant was successfully used to demonstrate that wing-box components can be more cheaply, more reliably, and more easily manufactured by simple, innovative, easily automated processes.
Journal Article

Robustness Testing of Real-Time Automotive Systems Using Sequence Covering Arrays

2013-04-08
2013-01-1228
Testing real-time vehicular systems challenges the tester to design test cases for concurrent and sequential input events, emulating unexpected user and usage profiles. The vehicle response should be robust to unexpected user actions. Sequence Covering Arrays (SCA) offer an approach which can emulate such unexpected user actions by generating an optimized set of test vectors which cover all possible t-way sequences of events. The objective of this research was to find an efficient nonfunctional sequence testing (NFST) strategy for testing the robustness of real-time automotive embedded systems measured by their ability to recover (prove-out test) after applying sequences of user and usage patterns generated by combinatorial test algorithms, considered as “noisy” inputs. The method was validated with a case study of an automotive embedded system tested at Hardware-In-the-Loop (HIL) level. The random sequences were able to alter the system functionality observed at the prove-out test.
Technical Paper

Preliminary Investigation of the Impact of Flight-Path Variability of Icing Conditions Upon the Critical Ice Shape

2007-09-24
2007-01-3333
The Cranfield Icing Research Tunnel was used to carry out a preliminary study whose objective was to identify whether or not the introduction of flight-path variability could generate accretions notably different to the critical ice shape. A reference (critical) ice shape was generated under conditions obtained from Appendix C before variability was applied, firstly to LWC and secondly to temperature. The approach is presented and selected results are introduced in this paper. Results show that ice accretions produced under variable conditions can be notably different to the reference profile, and are potentially more detrimental aerodynamically.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Journal Article

New Guidelines for Implementation of Structural Health Monitoring in Aerospace Applications

2013-09-17
2013-01-2219
The first cross-industry guidelines for the implementation of structural health monitoring for aerospace applications have been created as a SAE International Aerospace Recommended Practices document: SAE ARP 6461 ‘Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft’ [1]. These guidelines have brought together manufacturers, operators / users, systems integrators, regulators, technology providers and researchers to produce information on the integration of SHM into aircraft maintenance procedures, generic requirements and advice on validation, verification and airworthiness. The take-up of SHM in the aerospace industry has been slow, in part due to the lack of accepted industry practices surrounding not just the technology itself (sensors and sensor systems) but also the associated issues arising from the introduction of new methods into aircraft maintenance.
Technical Paper

Modelling of Distributed-Propulsion Low-Speed HALE UAVs Burning Liquid Hydrogen

2015-09-15
2015-01-2467
The present work focuses on developing an integrated airframe, distributed propulsion, and power management methodology for liquid-hydrogen-fuelled HALE UAVs. Differently from previous studies, the aim is to assess how the synergies between the aforementioned sub-systems affect the integrated system power requirement, production, and distribution. A design space exploration study was carried out to assess the influence of distributing motor-driven fans on three different airframes, namely a tube-and-wing, a triple-fuselage, and a blended-wing-body. For the considered range of take-off masses from 5,000 to 15,000 kg, the 200 kW payload power requirement under examination was found to re-shape the endurance trends. In fact, the drop in specific fuel consumption due to the engine design point change alters the trends from nearly flat to a 25% maximum endurance increase when moving towards heavier take-off masses.
Technical Paper

Mathematical Programming for Optimization of Integrated Modular Avionics

2021-03-02
2021-01-0009
Every state-of-art aircraft has a complex distributed systems of avionics Line Replaceable Units/Modules (LRUs/LRMs), networked by several Data buses. These LRUs are becoming more complex because of an increasing number of new functions need to be integrated into avionics architecture. Moreover, the complexity of the overall avionics architecture and its impact on cable length, weight, power consumption, reliability and maintainability of avionics systems encouraged manufacturers to incorporate efficient avionics architectures in their aircraft design process. The evolution of avionics data buses and architectures have moved from distributed analog and federated architecture to digital integrated modular avionics (IMA). IMA architecture allows suppliers to develop their own LRUs/LRMs capable of specific features that can then be offered to Original Equipment Manufacturers (OEMs) as Commercial-Off-The-Shelf (COTS) products.
Technical Paper

Integration Issues for Vehicle Level Distributed Diagnostic Reasoners

2013-09-17
2013-01-2294
In today's aircraft the diagnostic and prognostic systems play a crucial part in aircraft safety while reducing the operating and maintenance costs. Aircraft are very complex in their design and require consistent monitoring of systems to establish the overall vehicle health status. Most diagnostic systems utilize advanced algorithms (e.g. Bayesian belief networks or neural networks) which usually operate at system or sub-system level. The sub-system reasoners collect the input from components and sensors to process the data and provide the diagnostic/detection results to the flight advisory unit. Several sources of information must be taken into account when assessing the vehicle health, to accurately identify the health state in real time. These sources of information are independent system-level diagnostics that do not exchange any information/data with the surrounding systems.
Technical Paper

Flyaway Tooling for Higher Quality, More Cost-Effective, Aerostructure

1998-06-02
981843
Co-production of aircraft is resulting in demands for higher standards of manufacturing quality to ensure that parts and sub-assemblies from different companies and countries are compatible and interchangeable. As a result the existing method of building aerostructure using large numbers of dedicated manufacturing jigs and assembly tools, is now seen as being commercially undesirable, and technologically flawed. This paper considers an alternative, potentially more cost-effective, approach that embraces digital design, manufacturing, and inspection techniques, and in which reference and tooling features are incorporated into the geometry of the component parts. Within the aerospace industry this technology is known as ‘Flyaway Tooling’.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
Technical Paper

Experimental Investigation of Thin Water Film Stability and Its Characteristics in SLD Icing Problem

2011-06-13
2011-38-0064
The objective of this work is to investigate the thin water film characteristics by performing a range of experiments for different icing conditions. Our focus is on the SLD conditions where the droplets are larger and other effects like splashing and re-impingement could occur. Three features for the thin water film have been studied experimentally: the water film velocity, wave celerity and its wavelength. The experiments are performed in the icing facilities at Cranfiled University. The stability of the water film for the different conditions has been studied to find a threshold for transient from continues water film to non-continues form. A new semi-empirical method is introduced to estimate the water film thickness based on the experimental data of water film velocity in combination of theoretical analysis of water film dynamics. The outcome of this work could be implemented in SLD icing simulation but more analysis is needed.
Journal Article

Environmental Impact Assessment, on the Operation of Conventional and More Electric Large Commercial Aircraft

2013-09-17
2013-01-2086
Global aviation is growing exponentially and there is a great emphasis on trajectory optimization to reduce the overall environmental impact caused by aircraft. Many optimization techniques exist and are being studied for this purpose. The CLEAN SKY Joint Technology Initiative for aeronautics and Air transport, a European research activity run under the Seventh Framework program, is a collaborative initiative involving industry, research organizations and academia to introduce novel technologies to improve the environmental impact of aviation. As part of the overall research activities, “green” aircraft trajectories are addressed in the Systems for Green Operations (SGO) Integrated Technology Demonstrator. This paper studies the impact of large commercial aircraft trajectories optimized for different objectives applied to the on board systems.
Technical Paper

Engine Cascade Rig Design Tests and Results in App C Conditions

2023-06-15
2023-01-1419
Current modelling capability for engine icing accretion prediction is still limited for App. C. To further validate icing codes in complex engine geometries, it is necessary to perform additional experimental work in relevant geometrical and environmental conditions. Within the frame of ICE GENESIS [1], an experiment has been setup to replicate the condition at the inlet of an engine first stage compressor. This paper describes the choices for the design of the engine compressor model, the setup within the icing wind tunnel and the methodology employed to obtain the results. Additionally, more effort has been focused on obtaining accurate ice shapes using a 3D scanning system. Results of 3D scans are given.
Technical Paper

Effects of Ice Accretion in an Aircraft Protective Mesh Strainer of a Fuel Pump

2015-09-15
2015-01-2449
This paper focuses on the investigation of the nature, process and effects of ice accretion on different feed pump strainers upstream of the aircraft feeding system. A suitable test rig was designed to circulate Jet A-1 containing water/ice contaminants at cold temperatures through the strainers. Following an extensive literature review, a number of screening tests were performed. These provided a strong base for an exhaustive study of fuel icing in the dynamic environment offered by the test rig. The effects of the rate of fuel cooling on the nature of ice were examined. As expected, it was observed that the yield of ice generated on the mesh screen increased with the water concentration in the fuel. It was also revealed that at higher cooling rates, a crust of snow formed on top of softer ice on the mesh screen.
Technical Paper

Dual Use IVHM for UAS Health Management

2013-09-17
2013-01-2202
UAS (Unmanned aircraft system), widely known to the general public as drones, are comprised of two major system elements: an Unmanned Aircraft (UA) and a Ground Control Station (GCS). UAS have a high mishap rate when compared to manned aircraft. This high mishap rate is one of several barriers to the acceptance of UAS for more widespread usage. Better awareness of the UA real time as well as long term health situation may allow timely condition based maintenance. Vehicle health and usage are two parts of the same solution to improve vehicle safety and lifecycle costs. These can be worked on through the use of two related aircraft management methods, these are: IVHM (Integrated Vehicle Health Management) which combines diagnosis and prognosis methods to help manage aircraft health and maintenance, and FOQA (Flight Operations Quality Assurance) systems which are mainly used to assist in pilot skill quality assurance.
Technical Paper

Dimensional Analysis to Parameterise Ice Accretion on Mesh Strainers

2011-10-18
2011-01-2795
Water is always present in jet fuel, usually in a mixture of forms. At very low temperatures this phenomenon can lead to the formation of ice crystals within the aircraft fuel system, which can then stay in suspension within the entire volume of fuel. Pumps within the fuel system transfer fuel around the system. Pumps such as boost pumps that are typically used in fuel systems are protected by a weave type filter mesh at the inlet. Ice accretion on the surface of this mesh has operational implications as it can cause non optimal fuel flow. In this investigation, two fundamental tools are being used: 1) a high fidelity MATLAB model of a mesh strainer, pick-up line and pump, and 2) a test rig of the modelled system. The model is being used to investigate fuel system performance when exposed to fuel containing water/ice contaminants at cold temperatures.
Technical Paper

Development of a Broad Delta Airframe and Propulsion Concepts for Reducing Aircraft Noise around Airports

2007-09-17
2007-01-3806
This paper describes the impact of noise on the civil aircraft design process. The challenge to design ‘silent’ aircraft is the development of efficient airframe-engine technologies, for which integration is essential to produce an optimum aircraft, otherwise penalties such as higher fuel consumption, and, or noise are a concern. A description of work completed by Cranfield University will cover design methodologies used for a Broad delta airframe concept, with reference to future studies into alternate concepts. Engine cycle designs for ultra-high bypass ratio, constant volume combustor, and recuperated propulsion cycles are described, with a discussion of integration challenges within the airframe.
X