Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Power-Assisted Space Suit Glove Joint

1997-07-01
972323
The need for improvement of EVA gloves has been identified by NASA and the user community. Particularly important, especially for near to long term goals in the space program, is the need to reduce the fatigue associated with manual tasks. The University of Maryland Space Systems Laboratory (SSL), together with ILC Dover are currently developing an unobtrusive, power-assisted EVA glove that will attempt to provide a suited crewperson with as close to nude-body hand dexterity as possible. The power-assisted joint is designed to provide sufficient force to offset the resistance of the pressurized glove itself, thus alleviating manual fatigue, but provides no additional strength augmentation. This paper describes the initial prototype power-assist mechanism which has been developed, reviewing the relevant design issues and discussing the initial test results from the prototype.
Technical Paper

Design and Preliminary Test Results from a Second Generation Power-Assisted Space Suit Glove Joint

1998-07-13
981674
Near to long term goals in the nation's space program would benefit from a significant reduction of the fatigue associated with manual tasks performed by suited astronauts, and the corresponding increase in the comfort, safety, and productivity of EVA operations this would enable. To this end, the University of Maryland Space Systems Laboratory and ILC Dover Inc. have developed an electromechanical, power-assisted EVA glove which has demonstrated the ability to substantially reduce manual fatigue while simultaneously increasing range of motion. The lessons learned from the construction and testing of this initial prototype have been used to guide a second generation design for this power-assist concept, which achieves comparable or superior performance with significantly less hardware and power consumption. This paper describes the new, second generation power-assist mechanism, reviewing the relevant design issues and comparing its performance with the initial design.
X