Refine Your Search

Topic

Search Results

Standard

Optical equipment safety in fuel tanks

2018-11-15
WIP
ARP7977
This project aims to develop a framework of requirements which support safe installation and operation of optical devices within an aircraft fuel tank, specifically: 1: To determine optical power and energy limits which ensure safe operation of optical installations within an aircraft fuel tank over aircraft life and under all phases of flight, taking the limits provided in IEC 60079-28:20015 as a starting point. 2: To demonstrate optical and electrical power and energy equivalences, where possible. 3: To determine requirements for optical installations, including bonding and electrostatic discharge for non-conductive components such as optical fibres. 4: To provide guidelines for analysis of the hazards presented by the typical internal components of optical devices, such as failure modes of photo diodes and cells.
Standard

Method-Pressure Drop Tests for Fuel System Components

2013-08-09
HISTORICAL
ARP868C
This document provides recommended methods and describes associated equipment and test setups to assist in understanding and conducting pressure drop tests on fuel system components. Background information and suggestions are provided as means of improving accuracy and repeatability of test results. Although written specifically for fuel system components, the methods, equipment and suggestions presented herein apply equally to pressure drop tests of other liquid-handling devices.
Standard

METHOD - PRESSURE DROP TESTS FOR FUEL SYSTEM COMPONENTS

1994-09-01
HISTORICAL
ARP868B
To describe useful methods for conducting pressure drop tests of fuel system components for MIL-F-8615 or similar requirements and to present general suggestions for improving accuracy of test results.
Standard

Impact of Changes in Test Dust Contaminants and Particle Counter Calibration on Laboratory Filter Element Performance and Fluid Cleanliness Classes

2003-07-03
HISTORICAL
AIR5455
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
Standard

Impact of Changes in Test Dust Contaminants and Particle Counter Calibration on Laboratory Filter Element Performance and Fluid Cleanliness Classes

2012-01-03
CURRENT
AIR5455A
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
Standard

GRAVITY REFUELING NOZZLES AND PORTS INTERFACE STANDARD FOR CIVIL AIRCRAFT

1984-12-01
HISTORICAL
AS1852
This Aerospace Standard (AS) defines maximum free opening dimensions for airframe refueling ports on civil aircraft that require the exclusive use of aviation gasolines, and minimum free opening dimensions for airframe refueling ports on civil aircraft that operate with turbine fuels as a primary fuel type. In addition, this document defines the minimum refueling nozzle tip dimensions for turbine fuels ground service equipment, and the maximum refueling nozzle tip diameter dimension for aviation gasolines ground service equipment.
Standard

GRAVITY REFUELING NOZZLES AND PORTS INTERFACE STANDARD FOR CIVIL AIRCRAFT

1988-02-01
HISTORICAL
AS1852A
This AS defines maximum free opening dimensions for airframe refueling ports on civil aircraft that require the exclusive use of aviation gasolines, and minimum free opening dimensions for airframe refueling ports on civil aircraft that operate with turbine fuels as a primary fuel type. In addition, this document defines the minimum refueling nozzle tip dimensions for turbine fuels ground service equipment, and the maximum refueling nozzle tip diameter dimension for aviation gasolines ground service equipment.
Standard

Fuel Level Point Sensing

2020-11-30
CURRENT
AIR6325
This report is intended to identify the various existing technologies used for a fuel level sensing system. In addition to sensing technologies, it describes the basic architecture of fuel level sensing systems and their association with fuel gauging system to increase integrity of fuel measurement and management. As the fuel level sensing system is generally based on electrical components within fuel tanks, a specific focus is made on fuel tank explosion safety protection. An overview of the capacitive fuel gauging operation can be found in AIR5691.
Standard

Fluid-System-Component Specification Preparation Criteria

2013-10-04
CURRENT
AIR1082C
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

FLUID-SYSTEM-COMPONENT SPECIFICATION PREPARATION CRITERIA

2007-12-05
HISTORICAL
AIR1082B
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

DEFINITION OF PRESSURE SURGE TEST AND MEASUREMENT METHODS FOR RECEIVER AIRCRAFT

1983-03-01
HISTORICAL
ARP1665
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS 1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Considerations on Ice Formation in Aircraft and Engine Fuel Systems

2020-09-18
CURRENT
AIR790D
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water, such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. This can be considered as analogous to an emulsion state. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

1999-10-01
HISTORICAL
AIR790B
This document suggests and summarizes points that should be considered with respect to the formation of ice in aircraft fuel systems. These summaries represent a cross-section of the opinions of fuel system designers and users.
Standard

Aircraft Fuel System and Component Icing Test

2016-05-17
WIP
ARP1401C
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine (and APU) is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine/APU manufacturer for commercial and specific military applications. This ARP is written mostly to address fuel system level testing. It also provides a means to address the requirements of 14 CFR 23.951(c) and 25.951(c). Some of the methods described in this document can be applied to engine and APU level testing or components of those application domains.
X