Refine Your Search

Topic

Search Results

Standard

The Preparation and Use of Chromel-Alumel Thermocouples for Aircraft Gas Turbine Engines

2011-11-05
WIP
AIR46C
This SAE Aerospace Information Report (AIR) reviews the precautions which must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples. These are defined in NBS Monograph 125 as nickel-chromium alloy versus nickel-aluminum alloy thermocouples.
Standard

The Preparation and Use of Chromel-Alumel Thermocouples for Aircraft Gas Turbine Engines

1956-03-01
HISTORICAL
AIR46
This SAE Aerospace Information Report (AIR) reviews the precautions which must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples. These are defined in NBS Monograph 125 as nickel-chromium alloy versus nickel-aluminum alloy thermocouples.
Standard

The Preparation and Use of Chromel-Alumel Thermocouples for Aircraft Gas Turbine Engines

1996-11-01
CURRENT
AIR46B
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples. These are defined in NBS Monograph 125 as nickel-chromium alloy versus nickel-aluminum alloy thermocouples.
Standard

Temperature Measuring Devices Nomenclature

1996-06-01
CURRENT
ARP485A
This SAE Aerospace Recommended Practice (ARP) defines the nomenclature of temperature measuring devices. General temperature measurement related terms are defined first, followed by nomenclature specific to temperature measuring devices, particularly thermocouples.
Standard

Standard Exposed Junction Thermocouple for Controlled Conduction Errors in Measurement of Air or Exhaust Gas Temperature

1964-08-01
CURRENT
ARP690
The thermocouple design recommended herein is presented as one for which the correction to the observed emf, because of thermal conduction along the stem and wires, is within the limits presented in the accompanying figure. On referring to the figure, it is seen that no restriction is placed upon the diameter of the thermocouple or stem, and the longitudinal dimensions are expressed in terms of wire and stem diameters. The type of stem, such as packed ceramic stock, refractory insulating tubing, etc., also is left open to choice. Thus the sizes of wires and supporting stems may be varied over wide ranges to match particular requirements where conduction errors are to be limited or controlled.
Standard

Software Interfaces for Ground-Based Monitoring Systems

2001-09-01
HISTORICAL
AS4831
To establish a specification for software input and output interfaces for condition monitoring and performance programs used to monitor equipment from multiple manufacturers. The purpose of standardizing these interfaces is to improve operational flexibility and efficiency of monitoring systems as an aid to cost effectiveness (e.g., easier implementation).
Standard

Recommended Ice Bath for Reference Junctions

1964-08-01
CURRENT
ARP691
The ice bath recommended herein is similar to that described in SAE AIR 46.* Some material not presented in AIR 46, including preferred dimensions, has been added.
Standard

Propulsion System Monitoring for Continued Airworthiness

2020-04-24
WIP
ARP6835
The SAE E-32 Committee is requested to develop standards for Commercial Aircraft Engine Monitoring to support the Continued Airworthiness of aircraft in general, with particular emphasis on the ETOPS (Extended Operations) to support the regulations. 14CFR A33.3 (c) ETOPS Requirements. For an applicant seeking eligibility for an engine to be installed on an airplane approved for ETOPS, the Instructions for Continued Airworthiness must include procedures for engine condition monitoring. The engine condition monitoring procedures must be able to determine prior to flight, whether an engine is capable of providing, within approved engine operating limits, maximum continuous power or thrust, bleed air, and power extraction required for a relevant engine inoperative diversion. For an engine to be installed on a two-engine airplane approved for ETOPS, the engine condition monitoring procedures must be validated before ETOPS eligibility is granted.
Standard

Prognostics for Gas Turbine Engines

2008-06-09
CURRENT
AIR5871
This document applies to prognostics of gas turbine engines and its related auxiliary and subsystems. Its purpose is to define the meaning of prognostics with regard to gas turbine engines and related subsystems, explain its potential and limitations, and to provide guidelines for potential approaches for use in existing condition monitoring environments. It also includes some examples.
Standard

Prognostics for Aerospace Propulsion Systems

2018-09-11
WIP
AIR5871A
1.1 Purpose This document applies to prognostics of aerospace propulsion systems. Its purpose is to define the meaning of prognostics in this context, explain their potential and limitations, and to provide guidelines for potential approaches for use in existing condition monitoring environments. It also includes some examples. 1.2 Field of Application This document seeks to meet the increasing interest in prognostics for aerospace propulsion systems. Specifically, the document tries to provide a timely guideline for applying prognostic technologies to enhance the capability of current monitoring and diagnostic systems. Some examples are provided that are intended to illustrate different approaches and methodologies.
Standard

Prognostic Metrics for Engine Health Management Systems

2016-02-26
CURRENT
AIR5909
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of prognostic algorithms applied for Engine Health Management (EHM) functions. The emphasis is entirely on prognostics and as such is intended to provide an extension and complement to such documents as AIR5871, which offers information and guidance on general prognostic approaches relevant to gas turbines, and AIR4985 which offers general metrics for evaluating diagnostic systems and their impact on engine health management activities.
Standard

Lessons Learned from Developing, Implementing, and Operating a Health Management System for Propulsion and Drive Train Systems

2011-01-03
CURRENT
AIR1871C
SAE Aerospace Information Report AIR1871 provides valuable insight into lessons learned in the development, implementation, and operation of various health monitoring systems for propulsion engines and drive train systems. This document provides an overview of the lessons learned for ground-based systems, oil debris monitoring systems, lubrication systems, and Health and Usage Monitoring Systems (HUMS) for military and commercial programs. For each case study, this document presents a brief technical description, the design requirements, accomplishments, lessons learned, and future recommendations. The lessons learned presented in this document represent a fragment of the knowledge gained through experience when developing and implementing a propulsion health management system. Previous versions of this document contain additional lessons learned during the 1980’s and 1990’s that may be of additional value to the reader.
Standard

Lessons Learned from Developing, Implementing, and Operating a Health Management System for Propulsion and Drive Train Systems

2018-04-05
WIP
AIR1871D
SAE Aerospace Information Report AIR1871 provides valuable insight into lessons learned in the development, implementation, and operation of various health monitoring systems for propulsion engines and drive train systems. This document provides an overview of the lessons learned for ground-based systems, oil debris monitoring systems, lubrication systems, and Health and Usage Monitoring Systems (HUMS) for military and commercial programs. For each case study, this document presents a brief technical description, the design requirements, accomplishments, lessons learned, and future recommendations. The lessons learned presented in this document represent a fragment of the knowledge gained through experience when developing and implementing a propulsion health management system. Previous versions of this document contain additional lessons learned during the 1980’s and 1990’s that may be of additional value to the reader.
Standard

Lessons Learned From Developmental and Operational Turbine Engine Monitoring Systems

1988-01-01
HISTORICAL
AIR1871B
The purpose of this AIR is to document some of the valuable lessons learned from several developmental and operational turbine engine monitoring programs. This AIR is not intended to be used as a standard or legal document but rather to provide an objective statement of the more important lessons learned during the development and operation of engine monitoring systems with widely varying operational requirements. It is through the use of ARP 1587 'Aircraft Gas Turbine Engine Monitoring System Guide,' and SP-478 'Aircraft Gas Turbine Engine Monitoring Systems,' an awareness of prior lessons learned and a clear definition of engine operational maintenance concepts that future engine monitoring systems can be developed to meet the specific needs of the user.
Standard

Guidelines for Integration of Engine Monitoring Functions With On-Board Aircraft Systems

1996-06-01
HISTORICAL
AIR4061A
This SAE Aerospace Information Report (AIR) discusses physical and functional integration of main engine and auxiliary power unit (APU) monitoring with other on-board systems. It includes General Considerations, Parameter Selection and Requirements, Signal Sources, Signal Conditioning, Data Processing, Data Storage, and Data Retrieval. Engine monitoring hardware and software are discussed so that they may be properly considered in an integrated design. Civil and military aviation applications are included and delineated where requirements differ.
Standard

Guidelines for Integrating Typical Engine Health Management Functions Within Aircraft Systems

2008-02-14
HISTORICAL
AIR4061B
SAE Aerospace Information Report (AIR) 4061 provides best practice guidelines for the integration of Engine Health Management (EHM) system functions within aircraft systems to include both its main engine(s) and any Auxiliary Power Unit(s) (APU). This document provides an overview of some of the functions EHM typically integrates, offers some system variations encountered with different aircraft, and suggests general considerations involved with integration. It presents a sample EHM parameter coverage matrix to show the types of parameters with which a typical EHM system might interface, offers insight into signal and data processing and retrieval, and offers a view of typical EHM parameter requirements by function. Where practical, this document delineates between military and commercial practices.
X