Refine Your Search

Search Results

Viewing 1 to 19 of 19
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2014-07-08
HISTORICAL
ARP5088B
The test method describes the procedure for determination of the total acid number of new and degraded polyol ester and diester based gas turbine lubricants by potentiometric titration technique. The method was validated to cover an acidity range 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricant.
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2006-11-01
HISTORICAL
ARP5088A
The test method describes the procedure for determination of the total acid number of new and degraded polyol ester and diester based gas turbine lubricants by potentiometric titration technique. The method was validated to cover an acidity range 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricant.
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2024-03-18
CURRENT
ARP5088C
The test method describes the procedure for determination of the total acid number (TAN) of new and degraded polyol ester and diester-based gas turbine lubricants by the potentiometric titration technique. The method was validated to cover an acidity range of 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricants.
Standard

TEST METHOD FOR THE DETERMINATION OF TOTAL ACIDITY IN POLYOL ESTER AND DIESTER GAS TURBINE LUBRICANTS BY AUTOMATIC POTENTIOMETRIC TITRATION

1998-01-01
HISTORICAL
ARP5088
The test method describes the procedure for determination of the total acid number of new and degraded polyol ester and diester based gas turbine lubricants by potentiometric titration technique. The method was validated to cover an acidity range 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricant.
Standard

Evaluation of Coking Propensity of Aviation Lubricants in an Air-Oil Mist Environment using the Vapor Phase Coker

2014-04-03
CURRENT
ARP5921
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008–2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Standard

Evaluation of Coking Propensity of Aviation Lubricants in an Air-Oil Mist Environment using the Vapor Phase Coker

2019-07-08
WIP
ARP5921A
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008-2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Single Phase Flow Technique

2020-09-02
WIP
ARP5996D
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 5.00 mg.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Single Phase Flow Technique

2014-01-02
HISTORICAL
ARP5996B
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Single Phase Flow Technique

2015-12-17
CURRENT
ARP5996C
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 5.00 mg.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Hot Liquid Process Simulator (HLPS) Single Phase Flow Technique

2003-01-11
HISTORICAL
ARP5996
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
Standard

Evaluation of Coking Propensity of Aviation Lubricants Using the Hot Liquid Process Simulator (HLPS) Single Phase Flow Technique

2003-07-03
HISTORICAL
ARP5996A
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
Standard

Compatibility of Turbine Lubricating Oils

2023-05-01
CURRENT
ARP7120
This method is used for determining the compatibility of a candidate lubricant with specific reference lubricants. The reference lubricants to be used will typically be mandated by the owner of the product specification against which the candidate lubricant is being compared. This method is split into two procedures (Procedure A and Procedure B) with a summary of each procedure contained in Section 4.
Standard

Bearing Corrosion Test Method

2006-11-01
HISTORICAL
ARP4249
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
Standard

Bearing Corrosion Test Method

2015-08-28
CURRENT
ARP4249A
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
X