Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Journal Article

Microgravity Evaluation of Colorimetric-Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

2008-06-29
2008-01-2199
We are developing a drinking water test kit based on colorimetric-solid phase extraction (C-SPE) for use onboard the International Space Station (ISS) and on future Lunar and/or Mars missions. C-SPE involves measuring the change in diffuse reflectance of indicator disks following their exposure to a water sample. We previously demonstrated the effectiveness of C-SPE in measuring iodine in microgravity. This analytical method has now been extended to encompass the measurement of total I (i.e., iodine, iodide, and triiodide). This objective was accomplished by introducing an oxidizing agent to convert iodide and triiodide to iodine, which is then measured using the indicator disks previously developed for iodine. We report here the results of a recent series of C-9 microgravity tests of this method. The results demonstrate that C-SPE technology is poised to meet the total I monitoring requirements of the international space program.
Technical Paper

Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

2007-07-09
2007-01-3216
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements.
Technical Paper

GC/MS and CE Methods for the Analysis of Trace Organic Acids in Reclaimed Water Supplies

1994-06-01
941392
The objective of this study was to investigate combining GC/MS and CE methods to allow sub-mg/L levels of organic acids to be determined in various water samples. This study also served as a basis for evaluating these instruments for in-flight spacecraft water-quality monitoring and to help determine the modifications needed to convert terrestrial hardware for use in microgravity environments. This paper reports on current GC/MS and CE method development and data generated from some recent spacecraft-related water samples. Plans for further method development are also discussed.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

A Spectrophotometric Analyzer for Aqueous Samples in Microgravity

1999-07-12
1999-01-2032
The development of a spectrophotometric analyzer for use on water samples in microgravity environments is discussed. The instrument is constructed around a commercial spectrophotometer, the Hewlett-Packard HP8453, with a separate turbidimetric analyzer, here a modified Hach 2100P ratio turbidimeter. Flow-through sample cells were constructed for each instrument to support microgravity use and sample deaeration. Spectrophotometric analyses on aqueous samples on orbit are sensitive to the presence of undissolved gases in the samples. In a micro-g environment, free gas in samples can and does remain suspended, clouding the mixture and interfering with spectral optical density measurements. This paper discusses the design of a spectrophotometric analyzer, with particular emphasis on the merits of two approaches to eliminating free gas interferences in on-orbit water analyses: hyperbaric gas redissolution and deaeration across a hydrophobic membrane.
X