Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Performance of Adsorption-Based CO2 Acquisition Hardware for Mars ISRU

2000-07-10
2000-01-2238
Chemical processing of the dusty, low-pressure Martian atmosphere for production of propellants and other consumables will require conditioning and compression of the gases as first steps. A temperature-swing adsorption process can perform these tasks using solid-state hardware and with relatively low power consumption compared to alternative processes. The process can also separate the atmospheric constituents, producing both pressurized CO2 and a buffer gas mixture of nitrogen and argon. We have developed and tested adsorption-based compressors with production levels appropriate for near-term robotic flight experiments, which are needed to demonstrate the basic technologies for ISRU-based human exploration missions. In this talk we describe the characteristics, testing, and performance of these devices. We also discuss scale-up issues associated with meeting the processing demands of sample return and human missions.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

2005-07-11
2005-01-2942
This paper describes the results of an ongoing long-duration testing of a temperature-swing adsorption compressor (TSAC) that has application in closing the air revitalization loop of the International Space Station (ISS) and future spacecraft. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure as required by a processor. The TSAC described in this paper was designed to function as an interface device for the CO2 removal and reduction units of the International Space Station (ISS). The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for recovering the CO2 from the carbon dioxide removal assembly (CDRA) and delivering to a CO2 reduction unit of an oxygen recovery system and thereby closing the air-loop.
Technical Paper

Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

2004-07-19
2004-01-2375
Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled Temperature Swing Adsorption Compressor (TSAC) testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC)1. The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC)2. Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS.
Technical Paper

Integrated System Design for Air Revitalization in Next Generation Crewed Spacecraft

2004-07-19
2004-01-2373
Human space initiatives that involve long-duration space voyages and interplanetary missions are possible only with the technologies that enable integration of the air, water, and solid waste treatment systems that minimizes the loss of consumables. However, the capabilities of NASA’s existing environmental control and life support (ECLS) system designs consist of many independent systems that are energy extensive. This paper discusses the concept of an integrated system of CO2 removal and trace contaminant control units that utilizes novel gas separation and purification techniques and optimized thermal and mechanical design for future spacecraft. The integration process will enhance the overall life and economics of the existing systems by eliminating multiple mechanical devices with moving parts.
Technical Paper

Development and Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide in Closed-Loop Air Revitalization Systems

2005-07-11
2005-01-2941
The International Space Station's air revitalization system operates in an open loop mode and relies on the re-supply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required to deliver the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and close the oxygen loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC has the capability to remove carbon dioxide (CO2) from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure as required by a processor. As such, the TSAC is an excellent candidate for interfacing CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. A TSAC that uses air as a cooling medium was developed and tested at NASA Ames Research Center.
Technical Paper

Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

2004-07-19
2004-01-2374
This paper describes the mechanical design, thermal model development, and compression test results of a solid-state compressor prototype. This compressor utilizes the principle of temperature–swing adsorption compression and has no rapidly moving parts. Temperature-swing adsorption compressors (TSAC) have multiple applications in space exploration where acquisition, separation, purification, transportation or compression of gases are involved. NASA Ames Research Center (ARC) has developed a TSAC for potential application in a closed-loop air revitalization system (ARS) for a future spacecraft or crew exploration vehicle. Since the ARS of International Space Station (ISS) naturally serves as the baseline for future systems, we chose the design guidelines for this TSAC based on the ISS requirements. ARC has designed and successfully tested similar compressors that use a liquid cooling medium in the past.
Technical Paper

A Solid-State Compressor for Integration of CO2 Removal and Reduction Assemblies

2000-07-10
2000-01-2352
Oxygen loop closure is of high priority for an advanced space station air revitalization system. Closure will require the system's CO2 removal and reduction assemblies to be linked; however, the hardware for these two assemblies that is presently considered for use on the International Space Station (ISS) cannot be connected directly and so an interface device is needed. The interface device must provide an adequate vacuum for the CO2 removal assembly, must provide CO2 at a high enough pressure for the CO2 reduction assembly, and must also store sufficient CO2 to accommodate the difference in operating periods of the two processes. A mechanical vacuum pump/compressor with a buffer tank is one solution to the interface, but has drawbacks particularly in the areas of power consumption and size. A solid-state, adsorption-based compressor design is being developed at NASA Ames Research Center that meets the requirements of the interface device.
X