Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

Safety Analysis of an Airship Which Loses Lifting Gas from the Hull

2018-10-30
2018-01-1954
This study investigates the physical phenomena that affect a high-altitude airship in the presence of lifting gas losses from the hull. General atmospheric thermodynamics and basic physical principles are adopted to describe the behavior of an airship with envelope failures that generate buoyant gas dispersion or depressurisation phenomena. Overpressure that could grant to maintain some controllability during a large part of the descent is assessed by mean of the thermodynamic model of the envelope in the presence of gas losses. Optimisation of the inflation parameters is provided and the conditions for avoiding dangerous crashes on the ground and the potential recovery of a damaged vehicle, people and its payload. In particular, the requirements for a slow depressurisation is computed by the equilibrium with the atmosphere and then how can it be possible to sustain controlled navigation are determined.
Technical Paper

Rotary Friction Welding Thermal Prediction Model

2011-10-18
2011-01-2723
This paper starting by a previous mathematical model of rotary friction welding by the same authors defines a predictive methodology for a faster setup of rotary friction welding operations by thermal concentrated parameter model which describes temperature as a function of three elemental parameters: time, pressure and torque. It describes present a specific thermal method of calculation and verifies it by experimental data using a very simple experimental setup.
Technical Paper

Passive Attitude Control for Discoid Aerial Vehicles

2011-10-18
2011-01-2787
This paper presents and investigates different passive methods for reducing the notorious instability of discoid aerial vehicles. Presented methods are completely passive and involve elementary causes such as aerodynamic forces and gravitational effects. Four different system attitude control methods are presenting for different shapes and constructive solutions…
Technical Paper

MAAT Cruiser/Feeder Airship: Connection and Passenger Exchange Modes

2013-09-17
2013-01-2113
In the general framework of the EU FP7 MAAT project, a novel green air transport architecture is under development. The paper presents the possible architectures for the cabin connections and the transfer modalities for people, crew and freight, for to the European project MAAT. Different architectures have been evaluated setting out to cover the structural and propulsive needs and to enable the transport modes between the Cruiser and the Feeders. The different possibilities are discussed conceptually, by considering the advantages and disadvantages of the presented configurations. The bases for future detailed design and research are established, as through such conceptual study the main parameters are identified and found to affect the general design of both airships and their operability. The aim of this paper is to specify the necessary elements, which are necessary to perform the docking operation by taking into account the prescribed Feeder-Cruiser geometries.
Technical Paper

High Altitude Platform System Airship for Telecommunication and Border Monitoring Design and Physical Model

2020-03-10
2020-01-0044
This paper presents an accurate analysis of an innovative high altitude platform with an unconventional ellipsoidal shape during the most critical operation. The airship is designed accordingly to the specifications, which have been analyzed in terms of the required CONOPS (Concepts of Operations) which are associated with the proposed High Altitude Pseudo-Satellite (HAPS) technology and special operations and to analyze the operational scenarios. An innovative cruiser feeder system is defined and studied. The CONOPS includes communications relays, support of intelligence, surveillance, target acquisition monitor “mobile targets”, and reconnaissance, including long-range ISTAR missions performed by the feeder, combining satellite vision and HAPS vision for a forest fire, disasters, naval accidents, maritime and ground borders.
Journal Article

Fire-safe Airship System Design

2012-02-29
2012-01-1512
This paper presents the new Hydrogen Fire-safe Airship system that overcomes the limitations present in previous airships designs of that kind, when considering their functioning at advanced operative position. Hydrogen is considered to be more effective than helium because of its low-cost production by hydrolysis, which process is nicely driven only by the photovoltaic energy. This paper presents a novel architectural concept of the buoyant balloon designed to increase the fire related safety, when applying hydrogen as the buoyant gas. The proposed buoyant volume is designed as a multi-balloon structure with a naturally ventilated shape, to ensure that hydrogen cannot reach the dangerous concentration level in the central airship balloon. This concept is expected to be the start of a novel hydrogen airship type, to be much safer than preceding ones.
Technical Paper

Control, Propulsion and Energy Assessment of a Spherical UAS for Low Speed Operations

2017-09-19
2017-01-2065
This paper presents a comparison between different hypotheses of propulsion of a spherical UAS. Different architectures have been analyzed assessing their specific aerodynamic, energetic, and flight mechanics features. The comparison has been performed assuming the robustness of flight control in different wind conditions, defining for each the specific operative ranges, mission profiles, and energy assessment. An effective energy assessment and comparison against a commercial UAS has been produced. Even if the paper considers a preliminary simplified configuration, it demonstrates clearly to be competitive against traditional quadcopters in a predefined reference mission.
X