Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

Trace Contaminant Dynamics Simulation Model for TCRS Design Concept

2005-07-11
2005-01-2861
This paper deals with the development of the Trace Contaminant Dynamics Simulation Model (TCDSM) intended for the design concept of Trace Contaminants Removal System (TCRS) in development of a Space Vehicle Manned Pressurized Module (PM). The formalized description of the TCDSM includes the nonlinear equations of mass balance for the specific contaminants and the formalized descriptions of the contaminants sources and sinks. The crew and the PM non-metallic structural materials are main sources of contaminants. The air environments of the docking resupply (RSV) and crew-carrying space vehicles (CCSV) are the additional sources and sinks of the contaminants. The formalized description of the TCRS as the main sink of the contaminants takes into account the specific contaminants removal features based on the distribution factors defining its adsorptive capacity.
Technical Paper

The Comparison of Thermodynamic and Thermoeconomic Analysis in Application to Eco-Technical System Design

2003-07-07
2003-01-2363
The design of any complex system, especially eco-technical is very challenging due to the variety of processes, system composition, relation between different components and presence of the human. Process and technology selections affect the flow rate, composition, and phase of all resulting components. Therefore, evaluating alternative processes and/or technologies used often requires one to compare the relative environmental merits of distinctly different residual streams. Traditional thermodynamic analysis based on the first law of thermodynamics describes the conservation of energy. In this type of analysis all forms of energy are considered to be equivalent. The loss of quality of energy is not taken into account. It shows the energy flow to be continuous and energy balance is always closed. There can never be an energy loss, only energy transfer to the environment in which case it is useless.
Technical Paper

Testing and Operation of the Purification Unit of the System for Water Recovery from Humidity Condensate (WRS-C) with a Higher Content of Organic Contaminants

1998-07-13
981715
The paper presents the results of ground and flight (on OSS Mir) tests of an updated purification assembly of the WRS-C system outfitted with a filter-reactor. The tests have proved that the filter-reactor oxidizes effectively basic organic contaminants in humidity condensate including ethyleneglycol to ones that easily undergo sorption, enables the operation of the recovery system in the event of an off-design increase in organic contaminants in condensate and significantly improves the lifetime of the purification assembly. The data obtained confirm a wise selection of the purification assembly hardware for the system for water recovery from humidity condensate WRS-CM for the ISS service module.
Technical Paper

Systems for Water Reclamation from Humidity Condensate and Urine for Space Station

1994-06-01
941536
This paper deals with water reclamation from humidity condensate and urine schematics and processes realized on orbital space stations Salut and Mir. The results of research in updated processes and schematics for condensate separation, purification and distillation with heat energy recovery are described. It is shown that the processes and hardware make possible to reduce energy demand and the weight of the water recovery systems under operation on space stations.
Technical Paper

Problems of Developing Systems for Water Reclamation from Urine for Perspective Space Stations

1996-07-01
961409
The paper deals with possible performance enhancement of the system for water reclamation from urine based on a principle of atmospheric distillation. It is shown by way of example using the system operating on Mir that the introduction of heat energy recuperation, an increase in heat-and-mass transfer efficiency on evaporation and the optimization of the air flowrate in the distillation cycle allow a rise in the capacity of the distillation assembly and a reduction in specific energy. The system outfitted with a rotary evaporator/separator and a thermoelectric heat pump is reviewed. The design and experimental data verify the feasibility and benefits of the system updating.
Technical Paper

Prediction of Regenerative Life Support System Functioning

1996-07-01
961501
The paper is devoted to consideration of the possible approach to forecasting functioning physico/chemical Regenerative Life Support Systems (RLSS) in regular and off-normal conditions of operation on the basis of methods of mathematical simulation. Prediction of RLSS functioning under operating conditions represents the special interest for the analysis of off-normal situations, caused by development of a resource or presence that or that or of the other of failure of the equipment, or change of external conditions. In the given situations working mechanisms of transfer of mass and energy change not only characteristic and modes of operations of separate apparatus, but also, in a number of cases. The given peculiarities should be taken into account at formation of the formalized descriptions of the RLSS hardware.
Technical Paper

Off-normal Situations Related to the Operation of the Electron-VM Oxygen Generation System aboard the International Space Station

2005-07-11
2005-01-2803
The Electron-VM Oxygen Generation System (OGS) is a main source of oxygen for crew breathing on the International Space Station (ISS) and the result of updating the Electron-V OGS that has been in successful operation for 17 years on Mir Space Station. The successful accomplishment of a manned flight program primarily has resulted in the stable operation of the system. The paper deals with analysis of off-normal situations related to the operation of the Electron-VM on board ISS. The system switching-off analysis based on the telemetry information processing and the results of the additional tests conducted under flight and ground conditions is performed. A principal cause of system switching-offs is a reduction in the pressure built by the circulating pumps due to ingress of gas bubbles into the suction pipeline. The results of the Electron-VM OGS switching-off analysis and the practical recommendations regarding its prevention are reviewed.
Technical Paper

Hydrodynamic and Heat-and-Mass Transfer Processes in Space Station Water Recovery Systems

1993-07-01
932075
The paper systematizes typical hydrodynamic and heat-and-mass transfer chemical engineering processes realized in water recovery systems. The impact of micro-gravity on the processes is analyzed and general principles of the process organization in gas/liquid fluids are described. As examples, some typical separation processes in a coccurred flow channel with liquid suction through a porous wall, liquid evaporation into a vapour/gas fluid and vapour condensation from the vapour/gas mixture are considered for water recovery systems. A versatile approach based on an extended analogy between friction, heat transfer and mass transfer and on limited relative laws of a boundary layer at the permeable surface is suggested for an analysis and calculation of the friction resistance of a two-phase flow, heat transfer and mass transfer on evaporation and condensation. Recommendations for an analysis of the influence of free convection are made.
Technical Paper

Experience in Development and Operation of Systems for Water Recovery from Humidity Condensate for Space Stations

1995-07-01
951604
The paper analyzes and summarizes experience in developing and flight operation of the system for potable water recovery from humidity condensate. The system schematic and its hardware are reviewed. The system performance data on Salut and Mir space stations are presented. Succession to the development of a similar system for the International Space Station (ISS) service module is shown.
Technical Paper

Development of Urine Processor Distillation Hardware for Space Stations

1995-07-01
951605
This paper describes the results of research and tests of different patterns of distillation processes for water reclamation from urine accomplished by NIICHIMMASH in cooperation with other companies. Several typical patterns of evaporation to air flow from water-retentive porous bodies, from the surface confined by capillary/porous membranes and from free liquid surface in rotary units under atmospheric and reduced pressure are analyzed. Relevant condensation processes are reviewed. Performance data for distillation unit of SS MIR system for water reclamation from urine are outlined. The paper highlights the prospects of distillation hardware development.
Technical Paper

Development and Operation of Separation and Heat-Transfer Equipment of Water Recovery Systems for Space Stations

2000-07-10
2000-01-2253
The paper deals with description and results of long-term operation of separation and heat-and-mass transfer hardware incorporated in Mir's water recovery systems. Static separators outfitted with hydrophilic capillary/ porous elements, a rotary separator, a through-flow condenser/static separator combination, a membrane evaporator as well as separation and distillation schematics are reviewed. Operational and life performance data are discussed and recommendations for hardware use on ISS are made.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

A Physico/Chemical System for Hygiene Waste Water Recovery

1993-07-01
932076
The paper deals with some aspects and results of research in major processes and hardware of a system for hygiene waste water recovery and its architecture concepts. A principal system schematic and its functions on Mir space station are presented. It is shown that physico-chemical means ensure cost-effective recovery with minimum energy demand and resupply which is particulary important for long-duration space missions.
Technical Paper

A Concept of Lunar Base Regenerative Water Management System Construction

1995-07-01
951603
A concept of developing a regenerative water management system (RWMS) for first lunar base missions is reviewed. The principal feature of the concept proposed is the maximum possible unification of RWMS for long-duration orbiting station and a lunar base with due regard to possible modification of the hardware for lunar gravity conditions. The paper is based on the expertise in research, development, testing and flight operation of RWMS in Russia. An upgraded RWMS of the International Space Station may be used for first lunar missions.
X