Refine Your Search

Search Results

Technical Paper

Using Flight Hardware to Test the Space Station Water Reclamation and Management Subsystem in Zero-G

1988-07-01
881018
With the coming of the U.S. Space Station, the testing of the water reclamation system in zero-g could become very important to avoid costly redesigns and logistic problems. There are currently no plans to test the hardware in zero-g for long durations. This paper outlines one possible way to test the potable water reclamation system as a spacelab payload and the hygiene water reclamation system as a middeck payload in zero-g, while using existing National Space Transportation System (NSTS) flight hardware.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System for Core Complete Modules

2004-07-19
2004-01-2386
The Core Complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current and by the addition of future U.S.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

2003-07-07
2003-01-2596
The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS system hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.
Technical Paper

Space Station Freedom Predevelopment Operational System Test (POST) Carbon Dioxide Removal Assembly

1990-07-01
901392
Carbon dioxide removal from the Space Station Freedom atmosphere is an essential part of crew life support. Freedom must utilize carbon dioxide removal systems to prevent crew asphyxiation. This paper describes the predevelopment operational system test (POST) four-bed molecular sieve carbon dioxide removal assembly, its operation, and its key components. Many approaches are available to effect carbon dioxide removal, and include both regenerative and non-regenerative methods. To minimize Freedom logistics support and to close the cabin oxygen loop, regenerative systems will be relied upon. The Freedom carbon dioxide removal assembly will selectively remove carbon dioxide from an air supply stream, preventing carbon dioxide accumulation within the cabin, and then concentrate it for downstream processing in a carbon dioxide reduction system where oxygen eventually is recovered. Freedom will utilize a regenerative four-bed molecular sieve system for the carbon dioxide removal assembly.
Technical Paper

Space Station Freedom Carbon Dioxide Removal Flight Design

1993-07-01
932108
Boeing is responsible for Space Station Freedom (Work Package (WP) 01) which includes the Habitat and U.S. Laboratory modules, which includes the integration of the Environmental Control and Life Support System (ECLSS). Included as part of the ECLSS is the Atmosphere Revitalization (AR) subsystem. The AR subsystem provides for removal of metabolic carbon dioxide, removal of trace contaminants, and continuous monitoring of the cabin atmosphere major constituent composition during the Manned Tended Configuration (MTC) phase of station operations. The focus of this paper is on the Carbon Dioxide Removal Assembly (CDRA) flight design aspects of the Space Station Freedom (SSF) AR subsystem. A Four Bed Molecular Sieve (4BMS) has been selected by Boeing as the CDRA for SSF. The CDRA removes carbon dioxide from an air slip stream pulled from the Cabin Air Temperature & Humidity Control (THC) assembly.
Technical Paper

Space Station Freedom Carbon Dioxide Removal Assembly

1989-07-01
891449
Carbon dioxide removal from the Space Station Freedom atmosphere is an essential part of the overail life support and oxygen reclamation process. The system must selectively remove carbon dioxide from an air supply stream, then concentrate it for downstream processing in a carbon dioxide reduction system where oxygen is eventually recovered. Space Station Freedom will utilize a four-bed molecular sieve system for the carbon dioxide removal assembly. This system uses the principle of adsorption to selectively remove and concentrate carbon dioxide. The technology required for the four-bed system is well established and was proven in space flight during the Skylab program. This paper describes the four-bed molecular sieve carbon dioxide removal system, its operation and its key components.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Lessons Learned from the Node 1 Sample Delivery Subsystem Design

2007-07-09
2007-01-3184
This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Node 1 Sample Delivery Subsystem (SDS) and it will document some of the lessons that have been learned to date for this part of the subsystem.
Technical Paper

International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

2007-07-09
2007-01-3185
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2008 – 2009

2009-07-12
2009-01-2415
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2007 - 2008

2008-06-29
2008-01-2131
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2007 and February 2008. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2006 - 2007

2007-07-09
2007-01-3098
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2005 - 2006

2006-07-17
2006-01-2055
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2004 - 2005

2005-07-11
2005-01-2777
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2004 and February 2005. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2003 - 2004

2004-07-19
2004-01-2382
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2002 – 2003

2003-07-07
2003-01-2589
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
Technical Paper

International Space Station Environmental Control and Life Support System Phase Two Design Overview

1996-07-01
961470
The International Space Station (ISS) Program has been divided into three distinct stages. The first phase of the program performs risk mitigation experiments during the joint Shuttle - MIR missions. The second stage establishes a point in the program where the United States Laboratory will have the capability to support initial research, the Italian Mini-Pressurized Logistic module will provide the capability to help resupply the ISS and the United States Node and Laboratory module in conjunction with the Russian Functional Cargo Block (FGB) and Service Module (SM) will have the capability to support up to three crew members continuously on-orbit. The final phase of the program will complete the Russian and the U.S. segments and will add the Japanese and the European modules to ISS. At the end of stage three ISS will also have the capability to support up to six crew members continuously.
X