Refine Your Search

Topic

Search Results

Standard

Using Engine Test Data to Model Engine Performance

2019-11-05
CURRENT
AIR5509A
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data and prediction of engine performance based on that analysis.
Standard

Using Engine Test Data to Model Engine Performance

2012-11-01
HISTORICAL
AIR5509
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data, and prediction of engine performance based on that analysis
Standard

Supplemental Propulsion System Performance Station Designation

2019-01-03
CURRENT
AIR6508
This SAE Aerospace Information Report (AIR) supplements the AS755 performance station designation system for complex or unconventional propulsion cycles and their derivatives. The station numbering conventions presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The contents of this document will follow AS755 and AS6502 where applicable. The list of symbols presented herein will be used for identification of input and output parameters. These symbols are not required to be used as internal parameter names within the engine subprogram.
Standard

Shared Memory Interface for Gas Turbine Engine Performance Programs

2016-10-31
WIP
ARP7998
This is a recommended practice for an interface to supplier simulations that utilize traditional interprocess communication (IPC) methods of shared memory and semaphore communications. These IPC methods are fairly standard practice in the computer science world, that allow for communication by separate processes running on a computer without any common runtime requirements of each process being run. So 32bit applications can talk with 64 bit applications as well as any other compiler or runtime dependency being needed by the calling program to interface with the called system. This also allows the calling program and the called program to be run on separate CPUs to allow parallel execution of the called program as well as multiple instances of the called program to execute all on separate processors.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2015-10-20
WIP
AIR4548B
This SAE Aerospace Information Report (AI) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2001-07-01
CURRENT
AIR4548A
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

REAL-TIME MODELING METHODS FOR GAS TURBINE ENGINE PERFORMANCE

1995-12-01
HISTORICAL
AIR4548
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Methods for Executing Gas Turbine Engine Performance Programs to Generate Envelope Performance for Customers

2017-04-10
WIP
AIR7486
This is an initial release of an Aerospace Information Report to provide methods for Engine Suppliers to follow to execute their in house performance models to generate datasets that are provided to airframe customers early in the conceptual design phase of an aircraft program. This AIR provides some general guidance for execution order and input settings to be used to execute the model.
Standard

Gas Turbine Engine Steady-State and Transient Performance Presentation for Digital Computer Programs

1996-09-01
HISTORICAL
AS681G
This Aerospace Standard (AS) provides a method for the presentation of gas turbine engine steady-state and/or transient performance as calculated by means of digital computer programs. It also provides a method for the presentation of gas turbine parametric performance, weight and dimensions by means of digital computer programs. It is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
Standard

Gas Turbine Engine Steady-State and Transient Performance Presentation for Digital Computer Programs

1999-03-01
HISTORICAL
AS681H
This Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using digital computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight and dimensions computed by digital computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
Standard

Gas Turbine Engine Real Time Performance Model Presentation for Digital Computers

1993-03-01
HISTORICAL
ARP4148
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as digital computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time trransient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use.
Standard

Gas Turbine Engine Real Time Performance Model Presentation for Digital Computers

2003-07-15
HISTORICAL
ARP4148B
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as digital computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use.
Standard

Gas Turbine Engine Real Time Performance Model Presentation

2015-03-09
CURRENT
ARP4148C
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use. Models used in this application may also be contained in deliverable computer programs covered by AS681.
Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using Fortran 77

1989-07-01
HISTORICAL
ARP4191
This SAE Aerospace Recommended Paractice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS 681.
Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using Fortran 77

1995-04-01
HISTORICAL
ARP4191A
This SAE Aerospace Recommended Paractice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS 681.
Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using Fortran 77

2009-05-05
CURRENT
ARP4191D
This SAE Aerospace Recommended Paractice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS 681.
Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using FORTRAN 77

2003-04-28
HISTORICAL
ARP4191C
This SAE Aerospace Recommended Practice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 Language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS681.
Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using FORTRAN 77

1997-11-01
HISTORICAL
ARP4191B
This SAE Aerospace Recommended Practice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 Language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS681.
Standard

Gas Turbine Engine Performance Presentation for Computer Programs Using Fortran

2015-10-29
CURRENT
AS4191A
This SAE Aerospace Standard (AS) provides a method for gas turbine engine performance computer programs to be written using Fortran COMMON blocks. If a “function-call application program interface” (API) is to be used, then ARP4868 and ARP5571 are recommended as alternatives to that described in this document. When it is agreed between the program user and supplier that a particular program shall be supplied in Fortran, this document shall be used in conjunction with AS681 for steady-state and transient programs. This document also describes how to take advantage of the Fortran CHARACTER storage to extend the information interface between the calling program and the engine subroutine.
X