Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

“A Dry Aircraft is a Safer Aircraft – Beating Condensation by Using Dry Air”

2003-09-08
2003-01-3017
The airline industry seems to be providing more leisure features on planes like inflight entertainment, Internet access and Digital TV, but it seems the airline industry has ignored the issue of excess condensation on aircraft, which had plagued carriers since the birth of the airline industry. How safe are passengers when a wide body aircraft carries in excess almost a half ton of water and ice between the cabin and skin of the aircraft? Besides the added weight straining the aircraft, excess condensation soaks wires and connectors which can cause electrical shorts. There have been instances of emergency doors frozen shut, locked by ice stemming from excess water dripping inside the plane. Extra water also causes “rain-in-the-plane”, an issue that has gained national attention and causes passenger discomfort. It's time for the industry to address what has become a serious issue.
Standard

Wiring Aerospace Vehicle

2019-08-06
CURRENT
AS50881G
This specification covers all aspects in Electrical Wiring Interconnection Systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods.
Standard

Wiring Aerospace Vehicle

2006-10-05
HISTORICAL
AS50881C
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2010-07-15
HISTORICAL
AS50881D
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2015-05-29
HISTORICAL
AS50881F
This specification covers all aspects in electrical wire interconnection systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2013-12-09
HISTORICAL
AS50881E
This specification covers all aspects in electrical wire interconnection systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Technical Paper

Wireless Ground Communication in Support of Aircraft Maintenance and Flight Operations

1995-05-01
951387
The wireless Spread Spectrum Ground Communication (SSGC) system will contribute to the enhancement of aircraft maintenance, flight, dispatch, and cargo operations efficiency. A concept layout of the wireless SSGC system implementation in an airport environment is illustrated in Figure 1. The SSGC system will provide both text/graphics data transmission and voice communication for flight crew, maintenance, and dispatch personnel in the airport gate environment. This system will link ground information system and onboard avionics systems, and provide access by ground crew to an information database through portable graphics terminals. The objective is to integrate both airborne avionics, ground crew, and ground based resources into a seamless operating system.
Standard

Wire, Electrical, Solderless Wrap, Insulated and Uninsulated, General Specification For

1998-07-01
HISTORICAL
AS81822
This specification cover both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or auotmatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
X