Refine Your Search




Search Results

Technical Paper

“Over the Rainbow”

To a large degree all of us at one time or another have envisioned our “Over the Rainbow” version of a future should be. System engineers envision perfect harmony between vehicle aerodynamics and avionics integration. The program manager dreams of schedules and funding well within the projected budget. Then reality; budget constraints, backward compatibility, technology availability, schedule problems, and etc. This paper is intended to recognize the “dreamer” and at the same time offer a means of reconciliation to the real world. We will address advanced avionics architectures and a transitionary means to attain our goals and objectives. An “Avionics System Index” will be presented which defines and specifies a means of describing and partitioned avionics configuration.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

YA-10B Single Seat Night Attack: Lessons Learned

This paper presents lessons learned from flight testing of the YA-10B Single Seat Night Attack (SSNA) testbed. The generic night attack avionics suite in the YA-10B was used to provide a workload baseline for use in future night attack programs. Pilot rating scales and physiological data were used to construct the workload data base.
Technical Paper

X-29A Subsystems Integration - An Example for Future Aircraft

The X-29A is the first X-series experimental aircraft developed in the United States since the mid-sixties. The X-29A is a technology demonstrator aircraft that integrates several different-technologies into one airframe. Among the technologies demonstrated are the aeroservoelastically tailored composite forward swept wings, close coupled canards, discrete variable camber wing, triplex digital flight control system with analog backup, thin supercritical wing, three surface pitch control, large negative static margin and the integration of these technologies into the X-29 airframe. This paper deals with the issue of technology integration of five of the X-29A subsystems and the early design decision to use existing aircraft, components whenever and wherever possible. The subsystems described are the X-29 aircraft Hydraulics System, the Electrical Power System, the Emergency Power System, the Aircraft Mounted Accessory Drive and the Environmental Control System.
Technical Paper

X-29 High AOA Flight Test Results: An Overview

An extensive high angle-of-attack (AOA) flight testing program has been performed with the X-29-2 (AF 82-0049) forward swept wing research aircraft. The high AOA envelope expansion phase cleared the aircraft to fly in a broad flight regime and produced important data on the high AOA clearance process and data analysis. Lessons learned during the military utility phase on the tactical advantages and disadvantages associated with high AOA maneuvering are impacting programs such as the X-31, HARV, and F-22. Insight on the critical forebody flow-field of the X-29 at high AOA was gained using on-surface pressure measurements and off-surface flow visualization during the aerocharacterization phase. The Vortex Flow Control (VFC) experiment conducted on the X-29 successfully proved the viability of a pneumatic blowing device manipulating forebody vortices to act as an aircraft controller, an historical first.

Wiring Aerospace Vehicle

This specification covers all aspects in Electrical Wiring Interconnection Systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods.
Technical Paper

Wireless Sensing - Future's Password to Digital Avionics System

Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
Technical Paper

Wireless Ground Communication in Support of Aircraft Maintenance and Flight Operations

The wireless Spread Spectrum Ground Communication (SSGC) system will contribute to the enhancement of aircraft maintenance, flight, dispatch, and cargo operations efficiency. A concept layout of the wireless SSGC system implementation in an airport environment is illustrated in Figure 1. The SSGC system will provide both text/graphics data transmission and voice communication for flight crew, maintenance, and dispatch personnel in the airport gate environment. This system will link ground information system and onboard avionics systems, and provide access by ground crew to an information database through portable graphics terminals. The objective is to integrate both airborne avionics, ground crew, and ground based resources into a seamless operating system.
Technical Paper

Wind Tunnel Testing of Micro Air Vehicles at Low Reynolds Numbers

This paper documents the development of the capability to test MAVs (Micro Air Vehicles) in the University of Florida’s wind tunnel facility. The main goal of this work was to obtain, with a reliable procedure, good quality experimental data from wind tunnel tests of air vehicles at low Reynolds numbers, in the order of 100,000. An overview of the instrumentation and data analysis techniques will be presented, followed by some samples of results from tests on specific aircraft. A standard aerodynamic characterization test was developed to perform a “quick” System Identification (SID) characterization of an air vehicle. The requirements for those tests were established by the modeling and control portion of the project. The test procedure was aimed to find the main aerodynamic derivatives that will be used to model the aircraft and design the flight control system. Three distinctly different vehicles ranging in size from 60 cm to 15 cm wingspan are discussed.
Technical Paper

Who Needs Avionics Performance Minimums - The Government or You?

A lengthy effort to develop the minimum operational requirements of avionics systems needed for participation in the air traffic control system has not yet yielded standards or a means of administration acceptable to all segments of aviation. A new, more palatable approach by which users of the airspace can provide certain minimum operational characteristics in their airborne electronic systems shows promise. In order to make it work, FAA must clearly describe its electronic systems, how they work, and what their limitations are, so that willing participants may find out what they need to do in order to be right. Based on these system standards, minimum operational characteristics of airborne avionics can be developed and implemented. These may then meet with the approval of most of those affected, since the requirements will merely represent their own self-interest.
Technical Paper

What is Your Altitude?

The design and development of an encoding altimeter incorporating a new method of display and an improved coding scheme for the transmission of altitude information to air traffic controllers is presented.
Technical Paper

What is WAT? Wrap Around Test: Maximizing Avionics BIT Utilization to Minimize Flightline Armament System Test Equipment Requirements

An evolutionary extension of military aircraft Built-In-Test has been developed for armament systems. This extension, Wrap-Around-Test shows promise in replacing conventional support equipment currently used to test aircraft interfaces prior to weapons loading and during system maintenance. Wrap-Around-Test offers the ability to verify weapon system integrity at a reduced cost, improved operational readiness and enhanced ergonomics.


This standard describes stand-alone windshear warning system comprised of a windshear warning computer and associated cockpit displays. The system uses data pertaining to aircraft movement with respect to air movement to detect and annunciate a windshear condition. As an option, it may also provide instrument guidance to the crew indicating optimum pitch to endure the windshear encounter.
Technical Paper


A brief review of the airline industry's viewpoint on the all-weather operations program. The paper describes airline policy views on landing guidance requirements, on implementation of ground and airborne all-weather facilities, and on the relationship of the Microwave Landing System to all-weather operations. The paper discusses some necessary characteristics of flight control systems and new cockpit displays for the achievement of more complex and more efficient approaches to runways. The paper expresses an airline man's views with respect to Independent Landing Monitors, visibility enhancement devices, and Air Traffic Situation Displays.

WDM LAN Network Management And Control

This document describes network management and control facilities for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. Unlike like point-to-point solutions, networks require a control plane to allocate the shared network resources and a management plane which provides a disciplined approach to configuring and monitoring the network. Within a Wavelength Division Multiplexed (WDM) environment, management and control provides wavelength selection and routing for traffic that is processed. The extent of network management and control depends on the design of the network, and can range from hardwired wavelengths to dynamic wavelength allocation with damage recovery.

WDM LAN Access and Aggregation

This document describes the Client Adaptation Element (CAE), the set of functions that provides access and aggregation capability for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. In the WDM LAN, the CAE fits in between the Optical Backbone, which provides transmission of data over the transparent network, and the clients which the network serves. The complexity of the CAE depends on the types and number of clients.
Technical Paper

Voice Interactive Systems Technology Assessment

New developments in cockpit displays and integrated weapons system avionics have changed military aviation significantly. The role of the pilot has been altered from that of a skilled manual operator to an executive manager of a computer-driven integrated weapons system. We are approaching a critical threshold of pilot workload with manual and visual information-transfer overload.