Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 22489
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“Quiet” Aspects of the Pratt & Whitney Aircraft JT15D Turbofan

1973-02-01
730289
This paper describes the engine design details of the Pratt & Whitney JT15D-1 engine as related to noise generation. Design principles and factors contributing to the very low-noise levels on the Cessna Citation aircraft are illustrated. Noise testing experiences and data from static tests on the United Aircraft of Canada Ltd. (UACL) flight test aircraft and from both static and flight tests on the Citation aircraft are discussed. Lessons learned from these tests and some future probabilities are outlined.
Technical Paper

“Melmoth”-An Experimental Private Aircraft

1975-02-01
750546
“Melmoth,” an amateur-designed and built light airplane, has a number of features unusual in general aviation aircraft, aiming to combine comfort, high cruising speed, aerobatic capability and transoceanic range in a single compact machine. Among these are high wing loading, large internal fuel capacity, variable aileron incidence, double-slotted Fowler flap, automatic fuel tank switching, internal cowl flaps, and an all-flying T-tail.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

ways of improving TAKE-OFF AND LANDING

1960-01-01
600026
SOME POSSIBILITIES for shortening the field length requirements of present-day jet aircraft are: Install leading-edge, high-lift devices which are retrofitable to present-day aircraft. Retrofit — or purchase new — aircraft powered by turbofan engines. These have an inherently higher take-off thrust to cruise thrust ratio than the jets, which vastly improves the take-off acceleration. Use boundary-layer control actuated by turbine discharge gas for immediate consideration in new aircraft engines. Use direct-lift jet engines. These will improve the block speed characteristics of the aircraft and also give vertical take-off and landing capabilities. This paper discusses the advantages of each of these possibilities. The author also describes the problem of airport location within a city, and its effect of total travel time.*
Technical Paper

the first year of the JET AGE . . . .reflections

1960-01-01
600059
THE FIRST YEAR of jet airline operation has brought many problems — and satisfactions — to the industry. Here the author discusses some of the more serious problems: 1. Scheduling. American Airlines used the “Monte Carlo” method to calculate payloads and flight times. 2. Baggage handling. Almost nothing annoys a passenger more than long waits for baggage at the end of a flight. One approach to the problem is the baggage expediter system. 3. Mechanical shutdowns. 4. Runway length. 5. Noise. Noise suppressors have not been effective enough, from the standpoint of communities surroundings airports. Development of the turbofan engine offers some hope in this area.*
Technical Paper

selection of Optimum Modes of Control for aircraft engines

1959-01-01
590047
THE optimum mode of control for an aircraft engine is dependent on both the configuration of the engine and its application. Each engine application requires several detail modes of control, one for each definable regime of operation of the engine. Discussions of control requirements can be simplified by classifying these regimes by objectives: physical limiting, thrust, and transient control. The turbojet engine is the basis for the discussion in this paper. Acceptable modes of control can often be selected by inspection of the engine and its application. Selection of an “optimum” control mode requires investigation of the operation of the engine and weapons system at every stage of its use. The selection of a “mode” of control requires a compromise between performance and other design factors. The need for simplicity and accuracy must be balanced against the stability requirements. The availability and flexibility of control components may limit the modes of control considered.
Technical Paper

properties of Asbestos Reinforced Laminates at elevated temperatures

1960-01-01
600063
IF ROCKET OR MISSILE designers were asked to choose one specific property of engineering materials they would like to have improved, the largest percentage would undoubtedly select strength at high temperature. In addition to retaining strength at high temperatures, missile materials must be resistant to erosion and ablation. Missile structures must also be satisfactory when subjected to aerodynamic and acceleration loads, high stresses of vibration, and thermal shock. The need for low-density, easily fabricated, heat-resistant materials has resulted in a continuing search for more effective combinations of known materials, as well as the development of new materials. This paper discusses some interesting results obtained in studies of composite materials that might be used for rocket or missile construction.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

prediction in new Metal Joining Processes

1960-01-01
600020
NEW WELDING processes are dropping costs while providing improvements in weld quality. This paper describes some of the more promising new developments in pressure and fusion welding and brazing. Included in the discussion are ultrasonic, high frequency resistance, foil seam, magnetic force, percussion, friction, and thermopressure welding and diffusion bonding. The description of adhesive bonding includes the development of glass or ceramic materials as structural adhesives.*
Technical Paper

eROSITA Camera Low Temperature Thermal Control

2008-06-29
2008-01-1957
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
X