Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Standard

Zero Acceptance Number Sampling Procedures and Tables for Inspection by Attributes of A Continuous Manufacturing Process

2015-07-01
CURRENT
EIA584
Conventional attribute sampling plans based upon nonzero acceptance numbers are no longer desirable. In addition, emphasis is now placed on the quality level that is received by the customer. This relates directly to the Lot Tolerance Percent Defective (LTPD) value or the Limiting Quality Protection of MIL-STD-105. Measuring quality levels in percent nonconforming, although not incorrect, has been replaced with quality levels measured in parts per million (PPM). As a result, this standard addresses the need for sampling plans that can augment MIL-STD-105, are based upon a zero acceptance number, and address quality (nonconformance) levels in the parts per million range. This document does not address minor nonconformances, which are defined as nonconformances that are not likely to reduce materially the usability of the unit of product for its intended purpose.
Technical Paper

Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance

1999-08-02
1999-01-2430
The first element of the International Space Station (ISS), Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya’s solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya’s solar arrays to determine the average solar energy incident on the arrays. KhSC used the incident energy results to determine Zarya’s electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements.
Technical Paper

X-38 Nose Skirt Panels - Results of Qualification Testing

2001-07-09
2001-01-2343
The X-38 vehicle will be used to demonstrate the future technology on durable TPS for the CRV. Astrium has produced two large CMC Nose Skirt side panels for the current X-38 configuration. The design of the 3 dimensional curved and large side panels comprises a light-weight, stringer stiffened concept which compensates the thermal expansion by a system of flexible metallic stand-offs. An optimum in flexibility and stiffness to fulfil all requirements had to be found: strong and stiff enough to carry the thermo-mechanical loads, but flexible enough to realise a fastening concept which does not fail due to thermal expansion. The fastening concept has been tested on development test level. Some thermal and mechanical tests on sub-structure level confirmed the design and analysis work of the complete TPS concept.
Standard

Wrenches, Twelve Spline, Metric

1989-11-01
CURRENT
MA1547A
This standard covers the design, performance, and test requirements for high strength, thin wall, commercial sockets, universal sockets, and box wrenches used for the attachment and detachment of metric spline drive, high strength, and high temperature aircraft fasteners. Inclusion of dimensional data in this standard is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes. This standard is based on, but not limited to, the following external spline wrenching system:
Standard

Wrenches, Box and Open End Combination Twelve Point, High Strength, Thin Wall, Metric

2013-02-10
CURRENT
MA4535A
This SAE Metric Aerospace Standard (MA) provides dimensional, performance, testing and other requirements for high strength, thin wall, double head box and combination wrenches which possess an internal wrenching design so configured that, when mated with hexagon (6 point) fasteners, they shall transmit torque to the fastener without bearing on the apex of the fastener’s wrenching points. This standard provides additional requirements beyond ANSI B107.9 appropriate for aerospace use. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wiring, Positioning, and Support Accessories

2010-05-12
HISTORICAL
AS23190A
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
Standard

Wiring, Positioning, and Support Accessories

2015-10-01
CURRENT
AS23190C
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
Standard

Wiring, Positioning, and Support Accessories

2012-03-07
HISTORICAL
AS23190B
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
Technical Paper

Wing Structural Assembly Methodology

1998-09-15
982156
This paper reviews today's aircraft wing production assembly methodology and technologies as well as innovative ideas for advancing the high-level wing assembly state-of-the-art. Automated wing assembly systems are only being utilized to rivet/fasten first level subassemblies like panels, spars, and ribs. All other high level assembly tasks are performed manually, incurring associated increases in recurring costs due to production inefficiencies, long lead times, expensive rate tooling, and difficult assembly tasks performed inside small wing compartments. Existing assembly methods, process parameters, and the process characteristics of manual, machine, and man/machine systems provide many opportunities for improving wing assembly.
Technical Paper

Wing Manufacturing: Next Generation

1998-07-31
985601
Due to the part size and technological limitations of the available assembly equipment, traditional wing manufacturing has consisted of a three stage process. Parts are first manually tacked together in an assembly jig, They are then removed from the jig, rotated horizontally and craned into an automated fastening machine. Finally they are removed from the fastening machines and craned to a third station where the manual tacks are removed and the parts are prepped for final wing box assembly. With the advent of electromagnetic riveting (EMR) and the traveling yoke assembly machine this traditional approach has been replaced with single station processing. Wing panels and spars can now be automatically tacked together under continuous clamp up in their assembly jigs using EMR. This eliminates the requirement for disassembly, debur and cleaning required with the manual process.
Technical Paper

Wing Assembly System for British Aerospace Airbus for the A320

1998-09-15
982151
British Aerospace needed an automated wing riveting system for fastening the A320 wing sections. The E4000 Wing Riveting System was designed and installed at their Airbus factory in Chester, UK and is now in production. It uses a five axis solid yoke with workheads on each end of the yoke. It accurately installs both rivets and lockbolts over the entire wing panel, including offset areas.
Standard

Wide-Body and Standard-Body Aircraft Lower Deck Cargo Compartment ULD Capacities

1999-03-01
HISTORICAL
AIR1869B
This SAE Aerospace Information Report (AIR) covers information relative to ULDs (Unit Load Devices) container and pallet configurations, maximum usable container, pallet and bulk compartment volumes and tare weights for the lower deck of various wide-body aircraft. Bulk compartment volumes are also included for standard-body aircraft.
X