Refine Your Search




Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Model Based Predictive Control of MELISSA Photobioreactors. Steady State Determination”

Mathematical modeling and control of artificial ecosystems, such as MELISSA, require first the study of physical and biological characteristics in optimal and limiting conditions. Following the previous determination of the stoichiometric equations (Spirulina compartment) and regarding the two phototrophic compartments of MELISSA (Rhodospirillaceae and Spirulina), we have first to focus our control study on the growth kinetics for the light source. In this paper, we recall the theoretical equations of microbial growth kinetics and emphasise the problem of the light transfer in a photobioreactor. We present their adaptations to our pilot plant taking into account technological and biological specifics (lamp spectrum, working illuminated volume, growth rate,…). We then develop the principles and structure of the control system and describe tests of both the hardware and software for several steady state configurations.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

euces Software Development

The euces project was initiated to be prepared for the future role of EADS as stage system prime for stage and launcher developments. Launcher stages for NGLV need to meet ambitious mission and operational demands. The paper will present a brief overview of the currently existing COMPONENT libraries and its possibilities as well as an application example which will be a simplified functional model of the ARIANE 5 EPS upper stage w.r.t. physical model formulation of its incorporated components, its schematic, data initialisation and simulation results obtained. The simulation results will be compared to flight data of a dedicated flight.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zero-G Simulation using Neutral Buoyancy

For human beings who have been reared on the earth with its 1 G gravitational field, the condition of weightlessness is a world with which we are unfamiliar. Even if the layout and equipment configuration of a spacecraft designed to compensate for operation under Zero-G conditions, there are some things which are not effective under actual weightless conditions. In the design of a manned spacecraft, it is necessary to accumulate design data on human performance in a weightless condition, then to undertake design evaluations and verification under weightless conditions. In this paper, testing for the purpose of evaluating the effectiveness of Zero-G simulation using neutral buoyancy, conducted first of all in Japan, and recommendations on the equipment and Facilities required to conduct such simulations, are described.
Technical Paper

Zen and the Art of Airplane Sizing

This paper describes the development of a set of algorithms that find the takeoff gross weight of an aircraft for given vehicle and engine characteristics, and mission requirements. A major objective was to find the most elementary set that would still yield useful answers. The result was a set that could be encoded on an inexpensive programmable pocket calculator with only 24 lines of code. Results are compared with actual characteristics of an executive jet and its derivative versions.
Technical Paper

X-36 Tailless Agility Aircraft Subsystems Integration

The X-36 is a remotely piloted 28% scale model of a two-axis-unstable notional future fighter aircraft with canards, a mid-wing and features the absence of any vertical control surfaces, Figure 1. The aircraft was jointly developed by the NASA Ames Research Center and McDonnell Aircraft & Missile Systems and flight tested at the NASA Dryden Flight Research Center. Objectives of this program were to demonstrate fighter aircraft agility for a vertical tailless configuration and to demonstrate the development of a low cost alternative to full size prototype aircraft. This paper presents some aspects of the subsystem integration methodology used to develop the X-36 Tailless Agility Research Aircraft.
Technical Paper

X-29 ECS High-Alpha Modifications

It was anticipated that during X-29 extended duration, high angle-of-attack flight (40 to 70 deg), aircraft ECS performance would significantly degrade. Computer modelling of the system indicated that the performance of the ECS decreased as the angle of attack increased. Modifications to improve system performance were analyzed and, as a result of this analysis, ECS hardware modifications have been incorporated on the aircraft. The High-Alpha Flight Test Program has proven the validity of these modifications. To date, the ECS on Ship No. 2 has performed well within its nominal operating parameters in the high-alpha regime.
Technical Paper

Wound Field Synchronous Generator Out-of-Phase Paralleling Transient Analysis

Paralleling synchronous generators requires a priori voltage matching and frequency synchronization. Exceeding normal limits can lead to severe electrical transients. The classical three-phase short circuit analysis is extended to include the case of two initially unloaded synchronous generators. An analytical solution is developed neglecting winding resistances and saturation. Of particular interest is the tendency to induce negative field currents that cause inverse voltages across the rotating rectifier in a brushless design. Typical aircraft generator parameters are used to predict the paralleling transient vs. initial rotor electrical angle mismatch. Results are compared to simulation and limited test results.
Technical Paper

Working Activity in Space: Preparation of the Scientific Experiments' Performance

One of the most unsolved problems in space projects, where human beings are involved, is the impossibility of simulating on the ground the effects of microgravity on astronauts' operability in space. [1] In particular, this is traceable in the performance of work activities, such as performing physiological scientific experiments. [2] This paper focuses on a study of the gap between the two operational scenarios: the ground test simulation and the in-flight space performance of complex physiological experiments. The major differences between the two operational scenarios are highlighted, and recommendations for improvement are suggested. The main finding of this paper is that, in order to make experiment performance not only possible but also easy and efficient, it is necessary to consider all human factors involved. With this perspective, the author's aim has been to find an effective way to consider all human factors of the ground and space operational conditions.
Technical Paper

Workforce Enterprise Modeling

Currently, many factors influence the NASA Kennedy Space Center (KSC) workforce. These factors include the drive for return to flight, a Shuttle Program end date of 2010, and the Vision for Space Exploration which calls for the development of a new launch vehicle. Additionally, external factors exist as well, such as the area's cost of living, the availability of skilled resources, and the unemployment rate affect the overall workforce climate. To manage the human capital in a manner consistent with safety and mission success, and to strategically position NASA KSC to execute its future mission, it is necessary to understand how all of these different influencing factors work together to produce an overall workforce climate. We have been using System Dynamics models in order to capture some of these factors. These system dynamics models are also the starting point of agent-based models.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Windtunnel Catalyticity Evaluation for Thermoprotective Elements

22 Flexible External Insulation (FEI) Blankets of various types were subjected to a plasma aging in simulated reentry conditions in TsAGI’s VAT-104 windtunnel in the frame of 4 test campaigns on FEI characterization. Blankets were tested at top side temperature Tw =800…1200°C during 60 min each. Widespread numerical simulation of the test conditions and the model heating was performed using full Navier-Stokes equations. FEI catalyticity obtained from correlation between measured and calculated heat fluxes is Kw=1…10m/s.
Technical Paper

Wind-Tunnel Investigation of the Forebody Aerodynamics of a Vortex-Lift Fighter Configuration at High Angles of Attack

Results of a recent low-speed wind-tunnel investigation conducted to define the forebody flow on a 16% scale model of the NASA High Angle-of-Attack Research Vehicle (HARV), an F-18 configuration, are presented with analysis. Measurements include force and moment data, oil-flow visualizations, and surface pressure data taken at angles of attack near and above maximum lift (36° to 52°) at a Reynolds number of one million based on mean aerodynamic chord. The results presented identify the key flow-field features on the forebody including the wing-body strake.
Technical Paper

Wind Tunnel Testing of an Advanced Flying Automobile Concept

A 1:12 scale model based on the Sokol A350 Advanced Flying Automobile Concept was examined in the San Diego State University Low Speed Wind Tunnel for performance and stability characteristics. Observation showed that the model stalled at angles of attack above 12 degrees, corresponding to a maximum coefficient of lift of 1.54 and a drag coefficient of .284 for the wing center position. Analysis of the moments revealed that the test model was unstable with the current design specifications, however varying the wing location provided additional insight on the stability of the model. With design changes based on moving the center of gravity forward, the prototype vehicle is capable of creating enough lift to fly safely.
Technical Paper

Wind Tunnel Testing of Micro Air Vehicles at Low Reynolds Numbers

This paper documents the development of the capability to test MAVs (Micro Air Vehicles) in the University of Florida’s wind tunnel facility. The main goal of this work was to obtain, with a reliable procedure, good quality experimental data from wind tunnel tests of air vehicles at low Reynolds numbers, in the order of 100,000. An overview of the instrumentation and data analysis techniques will be presented, followed by some samples of results from tests on specific aircraft. A standard aerodynamic characterization test was developed to perform a “quick” System Identification (SID) characterization of an air vehicle. The requirements for those tests were established by the modeling and control portion of the project. The test procedure was aimed to find the main aerodynamic derivatives that will be used to model the aircraft and design the flight control system. Three distinctly different vehicles ranging in size from 60 cm to 15 cm wingspan are discussed.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Technical Paper

Why Current Types of Accelerated Stress Testing Cannot Help to Accurately Predict Reliability and Durability?

This paper demonstrates the results of the analysis of the current practical situation in product reliability and durability as well as accelerated stress testing development. High stress testing is now the basic source for obtaining initial information to provide a prediction of a product's reliability and durability. This paper shows that this testing cannot offer information for the accurate prediction of reliability and durability, because the product degradation process during the testing differs from the product degradation process during the actual field situation. As a result, the time to failures also differs.

White Paper to Support Supersession of MIL-S-8879C With AS8879C

This paper was prepared to support supersession of MIL-S-8879C with Screw Thread Conformity Task Force selected industry standard AS8879C, published by the Society of Automotive Engineers (SAE). Other documentation changes will be covered by separate papers. Separate papers are anticipated for thread gaging issues, and thread gage calibration procedures. The STC-TF decided that the thread design standard needed to be completed before thread gage definition could be addressed. Thread gage definition has to be known before calibration procedures can be addressed.