Refine Your Search




Search Results


"Startle Effect" and Crew Performance

The scope of this ARP, "Startle Effect" and Crew Performance, includes pilots of turbine powered transport category aircraft and may also pertain to general aviation, the military, and/or other sectors of aircraft operations. It is focused on flight crews certified by the United States, however, may also pertain to crews certified by other countries. The scope describes all phases of training (initial, recurrent, upgrade, remedial, and operational) in both domestic and international flight operations, with the intent of assisting flight crews in responding to "startle effect".
Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.

2009 Ultimate GD&T Pocket Guide 2nd Ed

The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

2D Ice Shape Scaling for Helicopter Blade Profiles in Icing Wind Tunnel

Different Airbus Helicopters main rotor blade profiles were tested in different icing wind tunnels and for different icing conditions. One of the objectives of the accretion tests was to validate the use of 2D icing scaling laws established for fixed wing aircraft on helicopter blade profiles. Therefore, ice shapes resulting from tests with the same icing similarity parameters are compared to each other allowing the assessment of icing scaling laws for helicopter applications. This paper presents the icing scaling laws used at Airbus Helicopters on blade profiles, the different test set ups and test models and it presents the comparison of the ice shapes collected during the icing wind tunnel test campaigns.
Technical Paper

2D Polar Assessment in Icing Wind Tunnel for iced Helicopter Blade Profiles

A helicopter blade profile was tested in the DGA Aero-engine Testing's icing altitude test facility S1 in Saclay, France during the winter of 2013/2014. The airfoil was a helicopter main rotor OA312 blade profile made out of composite material and with a metallic erosion shield. Dry air and ice accretion tests have been performed in order to assess the iced airfoil's aerodynamic behaviour. Several icing conditions were tested up through Mach numbers around 0.6. This paper presents the test setup, the test model and some of the test results. The test results presented in this paper include the ice shapes generated as well as dry air and iced airfoil lift and drag curves (polars) which were obtained with the real ice shapes on the airfoil.
Technical Paper

3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System

A lightning mapping system has been developed that locates the sources of VHF radiation from lightning discharges in three spatial dimensions and time. The system consists of several VHF receivers distributed over an area of about 100 km diameter. The system locates VHF radiation sources over the array with an accuracy of about 100 m. The system locates sources out to 250 km from the center of the array with reduced accuracy. The observations are found to reflect the basic charge structure of electrified storms.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.


This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.


This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Technical Paper

4000–5000 R Temperature Surveys in Mach 0.2–0.6 Hydrocarbon Hot Gas Streams

This paper discusses five different methods for measuring the gas stream temperature from a burner using a hydrocarbon fuel, air, and oxygen. Tests were made with a single shielded BeO probe, a bare wire iridium -- 60% rhodium/iridium couple, a tantalum triple shielded platinum -- 10% rhodium/platinum thermocouple, the sodium line reversed technique, and a watercooled total enthalpy probe. The most serviceable system proved to be the bare wire iridium -- 60% rhodium/iridium couple, particularly for carrying out stream surveys where relative, rather than true temperatures, are of primary concern. More study is needed to establish a system for determining the true stream temperature.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Technical Paper

777 Wing and Engine Ice Protection System

This paper describes the wing and engine ice protection system, used on all 777 aircraft. The 777 ice protection system is unique in two ways: it has an advanced control system which minimizes aircraft power consumption. In addition, the system was procured by the prime contractor, Boeing, as a fully integrated subsystem from a single supplier.
Technical Paper

912iS Fuel Injected Aircraft Engine

The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
Technical Paper

A Canadian Government Look at Airworthiness

The paper traces the development of the approach to airworthiness taken by Canadian government authorities from its origin through to current practices. It describes the Aerospace industry, the carriers and general aviation in statistical terms, indicates the impact of economic regulatory reform and suggests the way ahead for Canadian and other authorities lies in the attitude and methodologies practiced by the European authorities in their development of JARs. I SHOULD PERHAPS start this presentation with a short word about authorities. At the conclusion of a speech on safety regulation by Mr. Ronald Ashford of the UK Civil Aviation Authority, reported in Flight International of April 19, 1986, the following quotation from St. Paul to the Romans appeared: “You wish to have no fear of the authorities? Then continue to do right and you will have their approval, for they are God's agents working for your good”.
Technical Paper

A Canopy Model for Plant Growth Within a Growth Chamber: Mass and Radiation Balance for the Above Ground Portion

As humans move into outer space, need for air, clean water and food require that green plants be grown within all planetary colonies. The complexities of ecosystems require a sophisticated understanding of the interactions between the atmosphere, all nutrients, and life forms. While many experiments must be done to find the relationships between mass flows and chemical/energy transformations, it seems necessary to develop generalized models to understand the limitations of plant growth. Therefore, it is critical to have a robust modelling capability to provide insight into potential problems as well as to direct efficient experimentation. Last year we reported on a simple leaf model which focused upon the mass transfer of gases, radiation/heat balances, and the production of photosynthetically produced carbohydrate. That model indicated some of the plant processes which had to be understood in order to obtain parameters specific for each species.
Technical Paper

A Carbon Dioxide Sensor Based on cw- Cavity Ring Down Spectroscopy

An optical sensor for the detection of carbon dioxide concentrations and stable isotope ratios is described. Either a continuous wave, fiber-coupled distributed feedback laser or an external cavity laser is used to pump an optical cavity absorption cell in cw-Cavity Ringdown Spectroscopy (cw-CRDS). This technique exploits the sensitivity enhancements provided by the long effective pathlength from the optical cavity created between two highly reflective mirrors (R>0.9999). The inherently high precision of the technique combined with its rapid data throughput allows for reliable measurements of both concentration and the isotopic composition of the sampled carbon dioxide. Data collected using a prototype of this sensor could be useful for monitoring module occupancy, crew health (through breath tests), and plant growth chambers.