Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 22995
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“The Impact Of The Microprocessor On Aircraft Electric System Control Philosophy”

1981-10-01
811085
The use of microprocessors for the implementation of control functions in aircraft electric systems has become a reality. This paper presents a brief survey of these systems along with a typical system block diagram. A description of the diagram highlights the advantages of microprocessor systems over existing noncomputerized control schemes. The second half of the paper discusses the adaptability of more advanced microprocessor systems in the next generation of aircraft electric systems. These powerful new computers will allow digital control and protection of single unit and paralleled generating and starting systems, as well as providing even more effective built-in-test.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

“Posture and Gait Control Enhancement Using Dermal Optical Sensitivity”

2004-07-19
2004-01-2484
Posture and gait controls underlie the fundamental physical and cognitive human factors necessary for astronauts’ safety and performance in Space. This central subsystem is adversely affected when exposed to an extreme or hostile environment. A specific stimulation, using dermal optical sensitivity, can be provided to the central nervous system to counteract peripheral stimulations due to microgravity as well as other negative stressors. We believe using dermal optical sensitivity-based stimulation can be key in the performance enhancement necessary to ensure human based space mission viability and success.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Over the Rainbow”

1987-10-01
872499
To a large degree all of us at one time or another have envisioned our “Over the Rainbow” version of a future should be. System engineers envision perfect harmony between vehicle aerodynamics and avionics integration. The program manager dreams of schedules and funding well within the projected budget. Then reality; budget constraints, backward compatibility, technology availability, schedule problems, and etc. This paper is intended to recognize the “dreamer” and at the same time offer a means of reconciliation to the real world. We will address advanced avionics architectures and a transitionary means to attain our goals and objectives. An “Avionics System Index” will be presented which defines and specifies a means of describing and partitioned avionics configuration.
Technical Paper

“Model Based Predictive Control of MELISSA Photobioreactors. Steady State Determination”

1994-06-01
941411
Mathematical modeling and control of artificial ecosystems, such as MELISSA, require first the study of physical and biological characteristics in optimal and limiting conditions. Following the previous determination of the stoichiometric equations (Spirulina compartment) and regarding the two phototrophic compartments of MELISSA (Rhodospirillaceae and Spirulina), we have first to focus our control study on the growth kinetics for the light source. In this paper, we recall the theoretical equations of microbial growth kinetics and emphasise the problem of the light transfer in a photobioreactor. We present their adaptations to our pilot plant taking into account technological and biological specifics (lamp spectrum, working illuminated volume, growth rate,…). We then develop the principles and structure of the control system and describe tests of both the hardware and software for several steady state configurations.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

“A Dry Aircraft is a Safer Aircraft – Beating Condensation by Using Dry Air”

2003-09-08
2003-01-3017
The airline industry seems to be providing more leisure features on planes like inflight entertainment, Internet access and Digital TV, but it seems the airline industry has ignored the issue of excess condensation on aircraft, which had plagued carriers since the birth of the airline industry. How safe are passengers when a wide body aircraft carries in excess almost a half ton of water and ice between the cabin and skin of the aircraft? Besides the added weight straining the aircraft, excess condensation soaks wires and connectors which can cause electrical shorts. There have been instances of emergency doors frozen shut, locked by ice stemming from excess water dripping inside the plane. Extra water also causes “rain-in-the-plane”, an issue that has gained national attention and causes passenger discomfort. It's time for the industry to address what has become a serious issue.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

« Ultra Flat Micro Heat Pipes » ®Generation for Space Industry

1999-07-12
1999-01-1976
This paper presents a breakthrough in the domain of micro heat pipes for electronic cooling. The proposed technology consists of a novel, sophisticated but industrial approach in cooling technique with flat and ultra-thin microchannel heat pipes. We present in the introduction the current needs in term of cooling system for electronic applications. The particular case of space based system is discussed and few projections into the future demonstrate the need for a new generation of cooling device. The fabrication process is explained to present our product and its flexibility of design and capacity. The key features and performances of a prototype based on this new generation heat pipe are presented.
Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
X