Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

1997-02-24
970516
There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

Development of Nitrocarburized High Strength Crankshaft Through Controlling Vanadium Carbonitride Precipitation by Normalizing

2009-11-03
2009-32-0076
In addition to the requirements of high power output and compactness, further reduction of weight is being required for motorcycle engines from the standpoint of fuel economy and reduction of CO2 emissions. For this purpose, it is important to reduce crankshaft weight, which is the heaviest rotating part in the engine. The crankshaft has to be strong enough to bear loads, as the demands of weight reduction are increasing. Yet, productivity has to be considered at the same time even when increasing crankshaft strength. In this report of crankshaft material studies that feature high fatigue strength, machinability and distortion correct-ability, attention is given to the fact that the amount of vanadium, which is known as an element that enhances the strength with its precipitation, accelerates deposition, dissolved in the steel depends on the heating temperature.
X