Refine Your Search

Topic

Author

Search Results

Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

1997-02-24
970516
There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Technical Paper

The Effects on Motorcycle Behavior of the Moment of Inertia of the Crankshaft

1997-02-24
971060
The moment of inertia of the crankshaft cannot be ignored when analyzing the dynamics of a motorcycle. In this research, the tire friction force (calculated by drag and tire side force) was used as an index of the drive performance. The ratio of roll rate and steering torque (here after referred to as a roll rate gain) was used as an index of the cornering performance, and it was analyzed as the influence of the moment of inertia of a crankshaft on the drive performance as well as cornering performance. As a result, the influence on drive performance and cornering performance by the moment of inertia has been found.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

2018-04-03
2018-01-0122
In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Study of Riding Assist Control Enabling Self-standing in Stationary State

2018-04-03
2018-01-0576
In motorcycles traveling at medium to high speed, roll stability is usually maintained by restoration forces generated by a self-steering effect. However, when the vehicle is stationary or traveling in low speed, sufficient restoring force does not occur because some of the forces, such as centrifugal force, become small. In our study, we aimed at prototyping a motorcycle having roll stability when the vehicle is stationary or at low speed with a steering control for self-standing assist, while maintaining stability properties in medium to high speed. A model was built to represent dynamics of roll motion, which is composed of a fixed point mass located above the vehicle’s center of gravity and another movable point mass below that gravity center. According to the model, when steered, the roll moment direction generated by the shift of the movable point mass becomes the same as the direction generated by the ground contact point shift of the front tire.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Technical Paper

Shifting Mechanisms and Variation of Frictional Coefficients for CVT Using Metal Pushing V-Belts

2000-03-06
2000-01-0840
In order to reveal the shifting mechanisms for CVT using a metal pushing V-belt, three shifting rates were introduced. The belt motion in the pulley groove was also characterized using mean coefficients of friction as parameters, which identify the slippage condition of the belt in the pulley groove. The experimental results showed that one of shifting rates, dR/ds was almost constant in the narrowing pulley regardless of both rotational speed and transmitted torque. Here, R is the belt pitch radius in the pulley and s is the length measured along the belt pitch line. This fact indicates that the shifting is primarily governed by elastic deformation of blocks of the belt. Power transmitting states were also evaluated using a different type of lubricating oil whose nominal coefficient of friction was higher than that for the conventional AT oil. The observed mean coefficients of friction vary due to oil although the basic response of the CVT unchanged.
Technical Paper

Research on Technique for Correction of Running Resistance with Focus on Tire Temperature and Tire Thermal Balance Model

2019-04-02
2019-01-0623
At present, measurements of running resistance are conducted outdoors as a matter of course. Because of this, the ambient temperature at the time of the measurements has a considerable impact on the measurement data. The research discussed in this paper focused on the temperature characteristic of the tires and developed a new correction technique using a special rolling test apparatus. Specifically, using a tire rolling test apparatus that made it possible to vary the ambient temperature, measurements were conducted while varying the levels of factors other than temperature that affect rolling resistance (load, inflation pressure, and speed). Next, a regression analysis was applied to the data for each factor, and coefficients for a relational expression were derived, making it possible to derive a quadratic equation for the tire rolling resistance correction formula.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Research Into Surface Improvement for Low Friction Pistons

2005-04-11
2005-01-1647
1 A new surface modification heat treatment technology called Wonder Process Craft which is different from plating and coating, was applied to the skirt section, which is the sliding surface of the piston in an internal combustion engine. This was intended to improve fuel economy and mechanical characteristics by reducing sliding resistance. In the application of solid lubrication, this treatment does not require the usage of binder, which was necessary for conventional coating, leading to the highest level achievable for the low sliding resistance effect inherent of solid lubrication. Since this treatment does not involve any change in significant dimensions, shapes, surface roughness, and so on, applying this treatment is easy. The persistence of the effect, productivity and recyclability of waste and emissions during treatment were also taken into account.
Technical Paper

Rear-End Collision Velocity Reduction System

2003-03-03
2003-01-0503
In Japan, rear-end collisions occur at higher frequency than many other kinds of traffic accident. The causes of rear-end collisions were therefore investigated. Accident statistics was used to conduct a statistical traffic accident analysis and a questionnaire survey was used to conduct a detailed traffic accident analysis. Simulation was then used to perform an accident analysis on the basis of those studies. The results suggested that many of these accidents were caused by momentary inattention during daily driving. Research was therefore carried out to determine what kind of collision avoidance assist system would be effective for use at such times. Tests were carried out to measure the obstacle avoidance characteristics of drivers using actual cars, and control timing parameters were established. In this process, the warning timing was set so that it would not lose its impact as a warning and also so that it would not interfere with the driver.
Journal Article

Quantitative Representations of Aerodynamic Effects on Handling Response and Flat Ride of Vehicles

2012-04-16
2012-01-0445
The effects of aerodynamic coefficients on handling response and flat ride were quantified. For handling response, the aerodynamic effect was quantified by analysis with linear representation and a two-wheel simulation model, using aerodynamic coefficients obtained from a full scale car wind tunnel. The correlation of aerodynamic coefficients and handling response with driving feel was also ascertained. Aerodynamic yaw moment and side-force were also converted to equivalent front and rear lift to standardize aerodynamic indexes and improve aerodynamic development efficiency. For flat ride, steady and unsteady aerodynamic effects were quantified by analysis with a two-degree-of-freedom mass-spring-damper simulation model and aerodynamic coefficients obtained from a 35% scale model wind tunnel and towing tank test. Unsteady aerodynamic force occurrence mechanism was ascertained by unsteady CFD using dynamic mesh.
Journal Article

Prediction of Friction Drive Limit of Metal V-Belt

2015-04-14
2015-01-1138
When fluctuations in the speed of rotation of the drive pulley are transmitted to the driven pulley via the metal V-belt, the transmitted fluctuations become attenuated as friction force approaches a state of saturation. The research discussed in this paper focused on these fluctuations in the speed of rotation and developed an index for the slip state between the belt and the pulleys. The drive and driven pulleys were regarded as a one-dimensional vibrating system connected by elastic bodies, and changes in the state matrix of the system were focused on. It was determined that when all of the eigenvalues in this state matrix become real numbers, slip speed between the belt and the pulleys increases sharply. A method was proposed of estimating this behavior of the eigenvalues from changes in the speed of rotation of the drive and driven pulleys, and indexing the current slip state.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
X