Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

2009-04-20
2009-01-1334
Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events

2019-09-09
2019-24-0083
A zero-dimensional heat release model was developed for compression ignition engines. This type of model can be utilized for parametric studies, off-line optimization to reduce experimental efforts as well as model-based control strategies. In this particular case, the combustion model, in a simpler form, will be used in future efforts to control the combustion in compression ignition engines operating on gasoline-like fuels. To allow for a realistic representation of the in-cylinder combustion process, a spray model has been employed to allow for the quantification of fuel distribution as well as turbulent kinetic energy within the injection spray. The combustion model framework is capable of reflecting premixed as well as mixing controlled combustion. Fuel is assigned to various combustion events based on the air-fuel mixture within the spray.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

X-Ray Radiography and CFD Studies of the Spray G Injector

2016-04-05
2016-01-0858
The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
Journal Article

X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

2017-09-04
2017-24-0178
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

What FutureCar MPG Levels and Technology Will be Necessary?

2002-06-03
2002-01-1899
The potential peaking of world conventional oil production and the possible imperative to reduce carbon emissions will put great pressure on vehicle manufacturers to produce more efficient vehicles, on vehicle buyers to seek them out in the marketplace, and on energy suppliers to develop new fuels and delivery systems. Four cases for stabilizing or reducing light vehicle fuel use, oil use, and/or carbon emissions over the next 50 years are presented. Case 1 - Improve mpg so that the fuel use in 2020 is stabilized for the next 30 years. Case 2 - Improve mpg so that by 2030 the fuel use is reduced to the 2000 level and is reduced further in subsequent years. Case 3 - Case 1 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. Case 4 - Case 2 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. The mpg targets for new cars and light trucks require that significant advances be made in developing cost-effective and very efficient vehicle technologies.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
Technical Paper

Well-to-Wheels Analysis of Advanced SUV Fuel Cell Vehicles

2003-03-03
2003-01-0415
Fuel cell vehicles are currently undergoing extensive research and development because of their potential for high efficiency and low emissions. A complete well-to-wheels evaluation is helpful when considering the introduction of advanced vehicles that could use a new fuel, such as hydrogen. Several modeling tools developed by Argonne National Laboratory were used to evaluate the impact of several new vehicle configurations. A transient vehicle simulation software code, PSAT (Powertrain System Analysis Toolkit), was used with a transient fuel cell model derived from GCTool (General Computational Toolkit); and GREET (Greenhouse gases, Regulated Emissions and Energy use in Transportation) was employed in estimating well-to-tank performances. This paper compares the well-to-wheels impacts of several advanced SUVs, including conventional, parallel and series hybrid-electric and fuel cell vehicles.
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Technical Paper

Vehicle System Impacts of Fuel Cell System Power Response Capability

2002-06-03
2002-01-1959
The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7 seconds. DIRECT, a derivative-free optimization algorithm, was used in conjunction with ADVISOR, a vehicle systems analysis tool, to systematically change both powertrain component sizes and the vehicle energy management strategy parameters to provide optimal vehicle system configurations for the range of response capabilities.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Technical Paper

Variable Air Composition with Polymer Membrane - A New Low Emissions Tool

1998-02-01
980178
Air can be enriched with oxygen and/or nitrogen by selective permeation through a nonporous polymer membrane; this concept offers numerous potential benefits for piston engines. The use of oxygen-enriched intake air can significantly reduce exhaust emissions (except NOx), improve power density, lessen ignition delay, and allow the use of lower-grade fuels. The use of nitrogen-enriched air as a diluent can lessen NOx emissions and may be considered an alternative to exhaust gas recirculation (EGR). Nitrogen-enriched air can also be used to generate a monatomic-nitrogen stream, with nonthermal plasma, to treat exhaust NOx. With such synergistic use of variable air composition from an on-board polymer membrane, many emissions problems can be solved effectively. This paper presents an overview of different applications of air separation membranes for diesel and spark-ignition engines. Membrane characteristics and operating requirements are examined for use in automotive engines.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
X