Refine Your Search

Topic

Search Results

Technical Paper

Tribological and Metallurgical Properties of Nitrided AISI 4340 Steel

2014-04-01
2014-01-0959
Nitridng usually improves wear resistance and can be accomplished using a gas or plasma method; it's necessary to find if there is any difference in surface roughness, wear and/or wear mechanism when choosing between methods for nitriding. In this study, Ball-on-disk wear test was compared on coupons nitrided with five different nitriding cycles that processed at temperatures of 500-570°C, with a processing time of 8 - 80 hrs. Different compound layer thicknesses were formed, (5-8μm), and a minimum of 0.38 mm case depth was produced. Nitrided samples were also compared to nitrocarburized and the nitrided coupons with a “0” compound layer in a ball-on-disk test. Few selected coupons were post-polished and wear test on ball-on-disk test was compared with the coupons without post polishing. Optical surface roughness using White Light Interferometry (WLIM) and metallurgical testing was performed.
Technical Paper

The Selection of Window in Spatial Phase Shift ESPI

2013-04-08
2013-01-1420
Shearography is a laser based optical method that is similar to holographic interferometry and ESPI. It is a full-field, non-contacting and non-destructive measurement method for the surface deformation. It overcomes some of the disadvantages of holography; it does not need a reference beam, so that it obtains vibration isolation and simplifies the setup. These advantages grant shearography the ability to be a practical measurement tool and it has already gotten many industrial acceptances for non-destructive testing The embedment of the phase shift technique improves dramatically the measuring sensitivity and accuracy of the shearography. It uses the piezoelectric as the carrier to generate a known phase gap and takes multiple images with the phase before and after the sample is loaded, so that the phase map is calculated. And for each pixel the phase is accurate. However, the disadvantage of the phase shift technique is the time consumption.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Journal Article

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

2014-04-01
2014-01-0824
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Residual Stresses in As-Quenched Aluminum Castings

2008-04-14
2008-01-1425
A significant amount of residual stresses can be developed in aluminum castings during heat treatment. This paper reports an experimental study of the residual stress distributions in aluminum castings after solution treatment and water quench. The residual stresses in aluminum castings are measured using both optical and resistance strain rosettes. The optical strain rosette technique was recently developed in conjunction with ring-core cutting method for residual stress measurement. The measured residual stresses from optical and resistance strain rosettes are compared with the results of X-ray and neutron diffraction measurements. The advantages and disadvantages of various measurement methods are discussed.
Technical Paper

Research on the different Behavior of Edge Cracking Limit by Adopting the Laser Cutting Method

2019-04-02
2019-01-1264
The edge fracture occurs more frequently during the forming procedure by using the material with higher strength. To avoid the edge fracture that happens during the manufacturing, the edge cracking limit at different pre-strain level needs to be determined. The edge of the part under forming is conventionally manufactured by mechanical cutting, and the edge cracking limit under this circumstance is already heavily studied. In recent years, laser cutting is more applied in the automotive industry to cutting the edge due to the following advantages over mechanical cutting: easier work holding, higher precision, no wearing, smaller heat-affected zone, etc. The change cutting method could lead to a different behavior to the edge cracking limit at different pre-strain level. In this paper, the edge cracking limits of sets of pre-strained coupons with different pre-strain levels are tested. Half of them is cut by the conventional punch method, and the other half uses laser cutting.
Technical Paper

Modified Experimental Approach to Investigate Coefficient of Friction and Wear under Lubricated Fretting Condition by Utilizing SRV Test Machine

2018-04-03
2018-01-0835
Fretting is an important phenomenon that happens in many mechanical parts. It is the main reason in deadly failures in automobiles, airliners, and turbine engines. The damage is noticed between two surfaces clamped together by bolts or rivets that are nominally at rest, but have a small amplitude oscillation because of vibration or local cyclic loading. Fretting damage can be divided into two types. The first type is the fretting fatigue damage where a crack would initiate and propagate at specific location at the interface of the mating surfaces. Cracks usually initiate in the material with lower strength because of the local cyclic loading conditions which eventually lead to full failure. The second type is the fretting wear damage because of external vibration. Researchers have investigated this phenomenon by theoretical modeling and experimental approaches. Although a lot of research has been done on fretting damage, some of the parameters have not been well studied.
Technical Paper

Measurement of Thermal Residual Strain Induced During the Hardening of a Sheet Metal and Reinforced Composite by Digital Shearography

2005-04-11
2005-01-0895
Shearography is an interferometric, non-contact and full field method for direct measurement of first derivatives of deformation (strain). It is relatively insensitive to environmental disturbances and has been proven to be a practical measuring tool for nondestructive testing and evaluation (NDT/NDE). In this paper it has been employed to study the thermal residual strains produced during the reinforcement of a composite to a sheet metal. The reinforced composite is used as an additive to provide extra strength to the sheet metal. The reinforcement process involves gradual heating of the glued composite to a temperature of around 175°C - 180°C and then allowing it cool down to room temperature. During the heating process both the composite and the sheet metal are strained, but during the cooling process some amount of strain is left behind in the sheet metal and it has a key role to play when the product is used for critical parts in automobile and aircraft industries.
Technical Paper

Low Friction Coating for High Temperature Bolted Joints in IC Engines

2023-04-11
2023-01-0733
The IC engine still plays an important role in global markets, although electrified vehicles are highly demanded in some markets. Emission requirements for stoichiometric operation are challenging. This requires the bolted joints for turbo, EGR (Exhaust Gas Recirculation) and exhaust manifold to work under much higher temperature than before. How to avoid fastener breakage due to bolt bending caused by cyclic changes of the thermal conditions in engines is a big challenge. The temperatures of the components in the exhaust, EGR (Exhaust Gas Recirculation) and turbo systems change from ambient temperature to about 800 ~ 1000 °C when engines run at peak power with wide-open throttle. The temperature change induces catastrophic cyclic bending and axial strain to the fasteners. This research describes a method to reduce the cyclic bending displacement in the fasteners using a low friction washer.
Journal Article

Long Life Axial Fatigue Strength Models for Ferrous Powder Metals

2018-04-03
2018-01-1395
Two models are presented for the long life (107 cycles) axial fatigue strength of four ferrous powder metal (PM) material series: sintered and heat-treated iron-carbon steel, iron-copper and copper steel, iron-nickel and nickel steel, and pre-alloyed steel. The materials are defined at ranges of carbon content and densities using the broad data available in the Metal Powder Industries Federation (MPIF) Standard 35 for PM structural parts. The first model evaluates 107 cycles axial fatigue strength as a function of ultimate strength and the second model as a function of hardness. For all 118 studied materials, both models are found to have a good correlation between calculated and 107 cycles axial fatigue strength with a high Pearson correlation coefficient of 0.97. The article provides details on the model development and the reasoning for selecting the ultimate strength and hardness as the best predictors for 107 cycles axial fatigue strength.
Technical Paper

Improved Wear Resistance of Austempered Gray Cast Iron Using Shot-Peening Treatment

2020-04-14
2020-01-1098
In this research, ball-on-plate reciprocating sliding wear tests were utilized on austempered and quench-tempered gray cast iron samples with and without shot-peening treatment. The wear volume loss of the gray cast iron samples with different heat treatment designs was compared under equivalent hardness. The phase transformation in the matrix was studied using metallurgical evaluation and hardness measurement. It was found that thin needle-like ferrite became coarse gradually with increasing austempering temperature and was converted into feather-like shape when using the austempering temperatures of 399°C (750°F). The residual stress on the surface and sub-surface before and after shot-peening treatment was analyzed using x-ray diffraction. Compressive residual stress was produced after shot-peening treatment and showed an increasing trend with austempering temperature.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
Technical Paper

Effect of Tool Stiffness and Cutting Edge Condition on Quality and Stretchability of Sheared Edge of Aluminum Blanks

2016-04-05
2016-01-0348
Stamping die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower trimming edges. For aluminum automotive exterior panels, this translates to a clearance less than 0.1 mm. However, quality of sheared edge and its stretchability are affected by stiffness of the cutting tool against opening of the clearance between the shearing edges. The objective of the study is to investigate the influence of stiffness of trimming or piercing dies against opening of the cutting clearance on sheared edge stretchability of aluminum blanks 6111-T4. For experimental study, one side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface achieved by metal finish. Burr heights of the sheared edge after different trimming configurations with 10% clearance were measured.
Technical Paper

Effect of Threaded Fastener Condition on Low Cycle Fatigue Failures in Metric Bolts Under Transverse Loading

2008-04-14
2008-01-0700
This paper presents an experimental investigation of the effect of threaded fastener condition on the low cycle fatigue behavior of a tightened metric fastener under a fully reversed, cyclic transverse load. The test set-up subjects tightened, threaded fasteners to the combined effect of axial, torsional, bending, and transverse shear loading. The two conditions of the fasteners were “as received” and “ultrasonically cleaned and oiled”. Fatigue performance at three different bolt tension levels was investigated. Based on preliminary testing arbitrarily selected amplitude of 0.05 inches was used for the cyclic transverse displacement, at a frequency of 10 Hz. A Scanning Electron Microscope (SEM) was used to assess the failure mode on a bolt fracture surface. The bolt stresses are sensitive to both thread and under head friction characteristics.
Technical Paper

Effect of Material Microstructure on Scuffing Behavior of Ferrous Alloys

2011-04-12
2011-01-1091
Scuffing is one of the major problems that influence the life cycle and reliability of several auto components, including engine cylinder kits, flywheels, camshafts, crankshafts, and gears. Ferrous casting materials, such as gray cast iron, ductile cast iron and austempered ductile cast iron (ADI) are widely applied in these components due to their self-lubricating characteristics. The purpose of this research is to determine the scuffing behavior of these three types of cast iron materials and compare them with 1050 steel. Rotational ball-on-disc tests were conducted with white mineral oil as the lubricant under variable sliding speeds and loads. The results indicate that the scuffing initiation is due to either crack propagation or plastic deformation. It is found that ADI exhibits the highest scuffing resistance among these materials.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
X