Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Validation for Pressure Estimation Algorithms of Decoupled EHB Based on Actuator Characteristics and Vehicle Dynamics

2020-04-14
2020-01-0210
Recently, electro-hydraulic brake systems (EHB) has been developed to take place of the vacuum booster, having the advantage of faster pressure build-up and continuous pressure regulation. In contrast to the vacuum booster, the pressure estimation for EHB is worth to be studied due to its abundant resource (i.e. electric motor) and cost-effective benefit. This work improves an interconnected pressure estimation algorithm (IPEA) based on actuator characteristics by introducing the vehicle dynamics and validates it via vehicle tests. Considering the previous IPEA as the prior pressure estimation, the wheel speed feedback is used for modification via a proportional-integral (PI) observer. Superior to the IPEA based on actuator characteristics, the proposed PEA improves the accuracy by more than 20% under the mismatch of pressure-position relation.
Journal Article

Vehicle Trajectory Prediction Based on Motion Model and Maneuver Model Fusion with Interactive Multiple Models

2020-04-14
2020-01-0112
Safety is the cornerstone for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS). To assess the safety of a traffic situation, it is essential to predict motion states of traffic participants in the future with mathematic models. Accurate vehicle trajectory prediction is an important prerequisite for reasonable traffic situation risk assessment and appropriate decision making. Vehicle trajectory prediction methods can be generally divided into motion model based methods and maneuver model based methods. Vehicle trajectory prediction based on motion models can be accurate and reliable only in the short term. While vehicle trajectory prediction based on maneuver models present more satisfactory performance in the long term, these maneuver models rely on machine learning methods. Abundant data should be collected to train the maneuver recognition model, which increases complexity and lowers real-time performance.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors

2023-04-11
2023-01-0050
High-speed vehicles in low illumination environments severely blur the images used in object detectors, which poses a potential threat to object detector-based advanced driver assistance systems (ADAS) and autonomous driving systems. Augmenting the training images for object detectors is an efficient way to mitigate the threat from motion blur. However, little attention has been paid to the motion of the vehicle and the position of objects in the traffic scene, which limits the consistence between the resulting augmented images and traffic scenes. In this paper, we present a vehicle kinematics-based image augmentation algorithm by modeling and analyzing the traffic scenes to generate more realistic augmented images and achieve higher robustness improvement on object detectors against motion blur. Firstly, we propose a traffic scene model considering vehicle motion and the relationship between the vehicle and the object in the traffic scene.
Technical Paper

Vehicle Distance Measurement Algorithm Based on Monocular Vision and License Plate Width

2019-04-02
2019-01-0882
In order to avoid the influence of the change of the camera pitch angle and the variation of the height of the ground on the ranging accuracy, improve the real-time performance of the algorithm by substituting the current widely-used monocular vision ranging algorithm which builds the optical model based on the shadow of the vehicle floor and the lane line, as well as avoid the classification of vehicle detection, a vehicle distance measurement algorithm based on monocular vision and license plate width is established. Firstly, the target image acquisition and preprocessing are studied. Then the paper studies the license plate image location segmentation method based on accelerated template matching. On this basis, the algorithm for obtaining the ratio of license plate width to image width is studied, and the function of vehicle distance and license plate ratio width is established.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Tracking of Extended Objects with Multiple Three-Dimensional High-Resolution Automotive Millimeter Wave Radar

2019-04-02
2019-01-0122
Estimating the motion state of peripheral targets is a very important part in the environment perception of intelligent vehicles. The accurate estimation of the motion state of the peripheral targets can provide more information for the intelligent vehicle planning module which means the intelligent vehicle is able to anticipate hazards ahead of time. To get the motion state of the target accurately, the target’s range, velocity, orientation angle and yaw rate need to be estimated. Three-dimensional high-resolution automotive millimeter wave radar can measure radial range, radial velocity, azimuth angle and elevation angle about multiple reflections of an extended target. Thus, the three-dimensional range information and three-dimensional velocity information can be obtained. With multiple three-dimensional high-resolution automotive millimeter-wave radar, it is possible to measure information in various directions of a target.
Technical Paper

Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Structures under Loading Uncertainties

2019-04-02
2019-01-0709
Carbon fiber reinforced plastic (CFRP) composite materials have gained particular interests due to their high specific modulus, high strength, lightweight and perfect corrosion resistance. However, in reality, CFRP composite materials cannot be used alone in some critical places such as positions of joints with hinges, locks. Therefore, metal reinforcements are usually necessary in local positions to prevent structure damage. Besides, if uncertainties present, obtained optimal structures may experience in failures as the optimization usually pushes solutions to the boundaries of constraints and has no room for tolerance and uncertainties, so robust optimization should be considered to accommodate the uncertainties in practice. This paper proposes a mixed topology method to optimize metal and carbon fiber reinforced plastic composite materials simultaneously under nondeterministic load with random magnitude and direction.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

The Design and Evaluation of EMB Actuator Scheme

2017-09-17
2017-01-2509
Electromechanical Braking System (EMB) stops the wheel by motor and related enforce mechanism to drive braking pads to clamp the friction plate. It is compact in sized as well as faster in response, which solves the issue of potential leakage and slows response of traditional hydraulic brake system. The institutions at home and abroad have put forward all kinds of new structural schemes of EMB. At present, there are various EMB structural schemes, but the analysis and evaluation of these schemes are relatively few. In this paper, on the basis of a large number of research, the EMB actuator is modular decomposed according to function ,then the parametric 3D model library of each function module is established. According to brake requirements of the target vehicle, a development platform is set up to match EMB actuator structure scheme quickly.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

State-of-the-Art and Development Trends of Energy Management Strategies for Intelligent and Connected New Energy Vehicles: A Review

2019-04-02
2019-01-1216
Intelligent and connected vehicle (ICV) and new energy vehicle (NEV) will be two important directions of the automotive technology in the future, and the coordinated development of these two directions reflects relevantly the higher requirements put forward by nowadays society and people. Through the use of intelligent and connected technology (ICT), NEVs can exchange various traffic information data with the outside world (e.g. other running vehicles, road infrastructure, internet, etc.) in real time, which is so-called Vehicle to Everything (V2X). Based on the further analysis of the mutual traffic information, the vehicles can identify the current driving conditions and predict the future driving conditions effectively, which can realize the real time optimization of the energy management strategies (EMSs) of vehicles’ powertrain system, so as to meet the driving requirements of vehicles under different driving conditions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Review on Uncertainty Estimation in Deep-Learning-Based Environment Perception of Intelligent Vehicles

2022-06-28
2022-01-7026
Deep neural network models have been widely used for environment perception of intelligent vehicles. However, due to models’ innate probabilistic property, the lack of transparency, and sensitivity to data, perception results have inevitable uncertainties. To compensate for the weakness of probabilistic models, many pieces of research have been proposed to analyze and quantify such uncertainties. For safety-critical intelligent vehicles, the uncertainty analysis of data and models for environment perception is especially important. Uncertainty estimation can be a way to quantify the risk of environment perception. In this regard, it is essential to deliver a comprehensive survey. This work presents a comprehensive overview of uncertainty estimation in deep neural networks for environment perception of intelligent vehicles.
Technical Paper

Research on Collision Avoidance and Vehicle Stability Control of Intelligent Driving Vehicles in Harsh Environments

2022-12-16
2022-01-7128
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

Probabilistic Vehicle Trajectory Prediction Based on LSTM Encoder-Decoder and Attention Mechanism

2022-12-22
2022-01-7106
In order to realize driving safety in highway scenarios, autonomous vehicles need to predict and reason about the driving intentions and motion trajectories of surrounding target vehicles in the near feature. Essentially, trajectory prediction of target vehicles can be viewed as a typical time series generation problem, which predicts the future trajectory of the vehicle through analyzing the input of historical trajectory information or its control signals. In actual traffic scenarios, the movement between vehicles is a process of mutual game and cooperation, namely the future trajectory of a vehicle is not only related to its own historical trajectory, but also to surrounding vehicles motion. However, different surrounding traffic participants have different influence on the target vehicle, and the future motion of the vehicle is often affected by some specific surrounding traffic agents deeply.
Technical Paper

Path-Tracking Controller Design for a 4WIS and 4WID Electric Vehicle with Steer-by-Wire System

2017-09-23
2017-01-1954
Path tracking is the rudimentary capability and primary task for autonomous ground vehicles (AGVs). In this paper, a novel four-wheel-independent-steering (4WIS) and four-wheel-independent-drive (4WID) electric vehicle (EV) is proposed which is equipped with steer-by-wire (SBW) system. For path-tracking controller design, the nonlinear vehicle model with 2 degrees of freedom (DOF) is built utilizing the nonlinear Dugoff tire model. The nonlinear dynamic model of SBW system is conducted as well considering the external disturbances. As to the path-tracking controller design, an integrated four-wheel steering (4WS) and direct yaw-moment control (DYC) system is designed based on the model predictive control (MPC) algorithm to track the target path described by desired yaw angle and lateral displacement. Then, the fast terminal sliding mode controller (FTSMC) is proposed for the SBW system to suppress disturbances.
X