Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

2017-03-28
2017-01-0771
The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Technical Paper

Empirical Study of Energy in Diesel Combustion Emissions with EGR Application

2011-08-30
2011-01-1817
Modern diesel engines were known for producing ultra-low levels of hydrogen and hydrocarbons. However, as emission control techniques such as exhaust gas recirculation (EGR) are implemented to meet stringent NOx standards, the resulting increase in partial-combustion products can be significant in quantity both as pollutants and sources of lost engine efficiency. In this work, a modern common-rail diesel engine was configured to investigate the EGR threshold for elevated carbon monoxide, hydrocarbon, and hydrogen emissions at fixed loads and fixed heat-release phasing. It is noted that increase in hydrocarbons, in particular light hydrocarbons (such as methane, ethylene, and acetylene) was concurrent with ultra-low NOx emissions. Hydrogen gas can be emitted in significant quantities with the application of very high EGR. Under ultra-low NOx production conditions for medium and high load conditions, the light hydrocarbon species can account for the majority of hydrocarbon emissions.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Technical Paper

An Investigation of OME3-Diesel Fuel Blend on a Multi-Cylinder Compression Ignition Engine

2022-03-29
2022-01-0439
Oxygenated, low energy-density fuels have the potential to decouple the NOx-soot emissions trade-off in compression-ignition engines. Additionally, synthetic fuels can provide a pathway to reach carbon-neutral utilization of hydrocarbon-based fuels in IC engines. Oxymethylene Dimethyl Ether (OME) is one such synthetic, low energy-density fuel, derived from sustainable sources that in combination with conventional fossil fuels with higher energy content, has the potential to reduce CO2 emissions below the US and EU VI legislative limits, while maintaining ultra-low soot emissions. The objective of this work is to investigate and compare the performance, emissions and efficiency of a modern multi-cylinder diesel engine under conventional high temperature combustion (HTC) with two different fuels; 1) OME310 - a blend of 10% OME3 by volume, with conventional Ultra-Low Sulphur Diesel (ULSD), and 2) D100 - conventional ULSD in North America.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Technical Paper

A Thermal Response Analysis on the Transient Performance of Active Diesel Aftertreatment

2005-10-24
2005-01-3885
Diesel fueling and exhaust flow strategies are investigated to control the substrate temperatures of diesel aftertreatment systems. The fueling control includes the common-rail post injection and the external supplemental fuel injection. The post injection pulses are further specified at the early, mid, or late stages of the engine expansion stroke. In comparison, the external fueling rates are moderated under various engine loads to evaluate the thermal impact. Additionally, the active-flow control schemes are implemented to improve the overall energy efficiency of the system. In parallel with the empirical work, the dynamic temperature characteristics of the exhaust system are simulated one-dimensionally with in-house and external codes. The dynamic thermal control, measurement, and modeling of this research intend to improve the performance of diesel particulate filters and diesel NOx absorbers.
X