Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Weld Line Factors for Thermoplastics

Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Tensile Test for Polymer Plastics with Extreme Large Elongation Using Quad-Camera Digital Image Correlation

Polymer plastics are widely used in automotive light weight design. Tensile tests are generally used to obtain material stress-strain curves. Due to the natural of the plastic materials, it could be elongated more than several hundred percent of its original length before breaking. Digital Image Correlation (DIC) Analysis is a precise, full field, optical measurement method. It has been accepted as a practical in-field testing method by the industry. However, with the traditional single-camera or dual-camera DIC system, it is nearly impossible to measure the extreme large strain. This paper introduces a unique experimental procedure for large elongation measurement. By utilization of quad-camera DIC system and data stitch technique, the strain history for plastic material under hundreds percent of elongation can be measured. With a quad-camera DIC system, the correlation was conducted between two adjacent cameras.
Technical Paper

Effect of Fiber Orientation on the Mechanical Properties of Long Glass Fiber Reinforced (LGFR) Composites

Long glass fiber reinforced (LGFR) composites have been widely used in automotive industry to reduce vehicle weight and maintain relatively high mechanical performances. Due to the injection molding process, the distribution of fiber orientations varies at different locations and through the panel thickness, resulting in anisotropic and non-uniform mechanical properties. The current practice of computer modeling of these materials is generally using isotropic properties adjusted by a certain scale factor. The effect of fiber orientation is not carefully considered due to the complexity of fiber orientation distribution in the LGFR parts. The purpose of this paper is to identify key factors affecting vehicle attribute performances where LGFR composites are used; and provide an efficient way for accurate CAE modeling of LGFR composites. In this study, tensile coupons cut from a simple geometric injection molded plaque are tested.
Journal Article

Drawbead Restraining Force Modeling with Anisotropic Hardening

A detailed investigation of the influence of anisotropic hardening models on drawbead restraining force is presented in this paper. The recently modified Yoshida model is adopted to characterize the anisotropic hardening behavior for steels. A two-dimensional drawbead model is used and the restraining forces corresponding to several different bead penetrations are obtained and compared against experimental results. The comparison of the predicted results for the Modified Yoshida Model with isotropic hardening models indicates that the anisotropic hardening gives lower drawbead restraining forces in general. The impact of hardening models on springback is also presented, and it's demonstrated that the springback amount predicted by the modified Yoshida model is much closer to the experimental data than that predicted by conventional isotropic hardening model.
Technical Paper

Characterization of 6XXX Series Aluminum Extrusions Using Digital Image Correlation (DIC) technique

Aluminum extrusions are used in the automotive industry for body structure applications requiring cross-section design flexibility, high section stiffness, and high strength. Heat-treatable 6xxx series extrusion alloys have typically been used in automotive due to commercial availability, competitive cost, high strength, and impact performance. This paper presents a characterization study of mechanical properties of 6xxx series aluminum extrusions using digital image correlation (DIC). DIC has been used to capture spatial strain distribution and its evolution in time during material deformation. The materials of study were seamless and structural 6061 and 6082 extrusions. The alloys have been tensile tested using an MTS load frame with a dual optical camera system to capture the stereoscopic digital images. Notable results include the differing anisotropy of seamless and structural extrusions, as well as the influence of artificial aging on anisotropy.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.