Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Moped Directional Dynamics and Handling Qualities

Analytical results describing moped lateral-directional response properties are presented. Design characteristics of four example mopeds related to directional handling are presented and compared with sample motorcycle properties. Resultant moped dynamics are quantified and compared. Using a nominal moped example, the sensitivity of the vehicle dynamics to operational and design variables, such as speed, loading and tire properties, is shown. Implications for rider/moped handling are reviewed.
Technical Paper


Motorcycle braking test procedures and results are presented. Both straight line and combined cornering and braking maneuvers were used. Test conditions included various initial speeds, turn radii, surface skid numbers, and levels of braking effort for two instrumented motorcycles. The effect of braking on transient yaw response in turns is demonstrated, also. Overall, the results show that repeatable safety related response and performance measures can be obtained using the prescribed procedures with expert test riders.
Technical Paper

Crosswind Response and Stability of Car Plus Utility Trailer Combinations

The results of a wind tunnel study and a computer simulation are used to determine the effects of aerodynamics on the lateral-directional stability and crosswind response of passenger car/utility trailer combinations. Single and tandem axle utility trailer configurations, with and without drag reducing add-on aerodynamic fairings, were considered with both sedan and station wagon tow cars. Results showed that including aerodynamic terms in the six degree of freedom model reduces the trailer tow angle stability and damping by a few percent. More importantly, the random crosswind response, expressed in terms of tow car yaw velocity, was amplified about 20 to 30 percent when a drag reducing device was added to the trailer.
Technical Paper

Correlation and Evaluation of Driver/Vehicle Directional Handling Data

Results of a study to analyze and correlate handling-related driver/vehicle system response and performance data are reported. Steering control tasks involving maneuvers and disturbance regulation are emphasized. Correlations between vehicle handling parameters, objective measures, and subjective rating data have been made. These have lead to the tentative definition of values of steering gain and effective yaw time constant which are preferred for satisfactory handling qualities and performance for passenger automobiles.
Technical Paper

An Overview of the DRI Driving Simulator

A simulator intended for driver/vehicle applied research and driver behavior studies is described. Designed and developed by Dynamic Research, Inc. in Torrance, CA, it features a 180 deg forward field of view, an animated graphics roadway scene, modular vehicle dynamics models, instrumented cabs with steering control loaders and aural cueing, an electrohydraulic hexapod motion base with ±2 ft of stroke in each leg, and system operation and data acquisition functions. Automobile and motorcycle cabs are available. Studies to date have considered steering and pedal controls layout, high speed brake in turn, and driver workload related to the use of an in-dash navigation and route guidance system.
Technical Paper

A Survey of Mid-Level Driving Simulators

The characteristics, functionality, limitations, and applications of mid-level driving simulators are reviewed and discussed. For this paper a mid-level simulator is defined as one which has a large roadway scene display typically comprising animated computer graphics, it may have a motion system or be fixed base, it should have a dedicated cab with a steering feel system and interactive controls and displays, it has a parametrically configurable vehicle dynamics model, data acquisition is provided for, and the simulator is intended to be used for driver behavior research and vehicle or highway research and development studies. Possible simulator sickness issues are discussed, and categories of mid-level driving simulator applications are noted. Approximately 20 different contemporary driving simulators are included in the survey.