Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Residual Aligning Moment Test

2019-07-11
WIP
J1988
This Recommended Practice describes the determination of tire pull force properties for an uninclined tire (SAE J670e) on a laboratory flat surface tire force and moment machine. It is suitable for accurately determining pull forces and residual aligning moments for passenger and light-truck tires. These properties are important determinants of vehicle trim. They describe steady-state, free-rolling pull effects ascribable to tires. The test method described in this document is suitable for comparative evaluation of tires for research and development purposes. The method is also suitable for modeling when followed carefully.
Standard

RESIDUAL ALIGNING MOMENT TEST

1994-08-01
CURRENT
J1988_199408
This SAE Recommended Practice describes the determination of tire pull force properties for an uninclined tire (SAE J670e) on a laboratory flat surface tire force and moment machine. It is suitable for accurately determining pull forces and residual aligning moments for passenger and light-truck tires. These properties are important determinants of vehicle trim (See section 2.1.2). They describe steady-state, free-rolling pull effects ascribable to tires. The test method described in this document is suitable for comparative evaluation of tires for research and development purposes. The method is also suitable for modeling when followed carefully.
Standard

Laboratory Testing Machines for Measuring the Steady State Force And Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1106_201208
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

Laboratory Testing Machines and Procedures for Measuring the Steady State Force and Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1107_201208
This Information Report presents background and rationale for SAE Recommended Practice J1106, Laboratory Testing Machine and Procedures for Measuring the Steady Force and Moment Properties of Passenger Car Tires. The purpose of SAE J1106 is to define standards for equipment design and test procedures so that data from different laboratories can be directly compared. Whereas such standardization is not a requirement for testing associated with tire development, it is necessary in the context of vehicle design and tire selection problems. The basic approach employed in developing SAE J1106 was to consolidate and document existing technology as embodied in equipment and procedures currently employed for routine tire evaluations. Equipment and procedures whose current use is restricted to research applications were not considered. Research experience is discussed in this Information Report, however, to the extent deemed necessary to provide background and rationale for SAE J1106.
Standard

Laboratory Testing Machines and Procedures for Measuring the Steady State Force and Moment Properties of Passenger Car Tires

1975-01-01
HISTORICAL
J1107_197501
This Information Report presents background and rationale for SAE Recommended Practice J1106, Laboratory Testing Machine and Procedures for Measuring the Steady State Force and Moment Properties of Passenger Car Tires. The purpose of J1106 is to define standards for equipment design and test procedures so that data from different laboratories can be directly compared. Whereas such standardization is not a requirement for testing associated with tire development, it is necessary in the context of vehicle design and tire selection problems. The basic approach employed in developing J1106 was to consolidate and document existing technology as embodied in equipment and procedures currently employed for routine tire evaluations. Equipment and procedures whose current use is restricted to research applications were not considered. Research experience is discussed in this Information Report, however, to the extent deemed necessary to provide background and rationale for J1106.
Standard

Force and Moment Test Method

1998-01-01
CURRENT
J1987_199801
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence.
Standard

Force and Moment Test Method

2019-07-11
WIP
J1987
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence. Heavy-duty tires are not considered in this document, because the measuring system would have force and moment ranges too large to meet sensitivity requirements for passenger and light truck tire force and moment measurements. A standard for heavy-duty truck tires would have many of the same features as this document, but the measuring system, would have to be extensively altered. Inclination angle combined with slip angle, pull forces, and any combination with spindle torque are not considered in this document. Standards needed for these topics will be considered separately.
X