Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses

Air spring due to its superior ride comfort performance has been widely used in distance passenger transporting vehicles. Since the requirements for ride comfort and handling performance are contradict to each other, handling performance and even roll stability are sacrificed to some extent to obtain good ride comfort. Due to the complex terrain and limited manufacturing level, in the past several years, bus rollover accidents with serious casualties have been reported frequently and bus safety has attracted more and more attention from bus manufacturers in China. On one hand the bus standards have to be raised, and on the other hand, novel solutions which can effectively improve the roll stability of air spring bus are needed to replace the inadequacy of anti-roll bars.
Technical Paper

Experimental Investigation of Interconnected Hydraulic Suspensions with Different Configurations to Soften Warp Mode for Improving Off-Road Vehicle Trafficability

Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes.
Technical Paper

Design and Dynamic Analysis of Bounce and Pitch Plane Hydraulically Interconnected Suspension for Mining Vehicle to Improve Ride Comfort and Pitching Stiffness

This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.