Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Parameter Identification and Validation for Combined Slip Tire Models Using a Vehicle Measurement System

It is imperative to have accurate tire models when trying to control the trajectory of a vehicle. With the emergence of autonomous vehicles, it is more important than ever before to have models that predict how the vehicle will operate in any situation. Many different types of tire models have been developed and validated, including physics-based models such as brush models, black box models, finite element-based models, and empirical models driven by data such as the Magic Formula model. The latter is widely acknowledged to be one of the most accurate tire models available; however, collecting data for this model is not an easy task. Collecting data is often accomplished through rigorous testing in a dedicated facility. This is a long and expensive procedure which generally destroys many tires before a comprehensive data set is acquired. Using a Vehicle Measurement System (VMS), tires can be modeled through on-road data alone.
Journal Article

Longitudinal Vehicle Dynamics Modeling and Parameter Estimation for Plug-in Hybrid Electric Vehicle

System identification is an important aspect in model-based control design which is proven to be a cost-effective and time saving approach to improve the performance of hybrid electric vehicles (HEVs). This study focuses on modeling and parameter estimation of the longitudinal vehicle dynamics for Toyota Prius Plug-in Hybrid (PHEV) with power-split architecture. This model is needed to develop and evaluate various controllers, such as energy management system, adaptive cruise control, traction and driveline oscillation control. Particular emphasis is given to the driveline oscillations caused due to low damping present in PHEVs by incorporating flexibility in the half shaft and time lag in the tire model.
Journal Article

Integrated Stability Control System for Electric Vehicles with In-wheel Motors using Soft Computing Techniques

An electric vehicle model has been developed with four direct-drive in-wheel motors. A high-level vehicle stability controller is proposed, which uses the principles of fuzzy logic to determine the corrective yaw moment required to minimize the vehicle sideslip and yaw rate errors. A genetic algorithm has been used to optimize the parameters of the fuzzy controller. The performance of the controller is evaluated as the vehicle is driven through a double-lane-change maneuver. Preliminary results indicate that the proposed control system has the ability to improve the performance of the vehicle considerably.
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
Journal Article

Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller

The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics.
Journal Article

Development of an Advanced Torque Vectoring Control System for an Electric Vehicle with In-Wheel Motors using Soft Computing Techniques

A two-passenger, all-wheel-drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors has been designed and developed at the University of Waterloo. A 14-degree-of-freedom model of this vehicle has been used to develop a genetic fuzzy yaw moment controller. The genetic fuzzy yaw moment controller determines the corrective yaw moment that is required to stabilize the vehicle, and applies a virtual yaw moment around the vertical axis of the vehicle. In this work, an advanced torque vectoring controller is developed, the objective of which is to generate the required corrective yaw moment through the torque intervention of the individual in-wheel motors, stabilizing the vehicle during both normal and emergency driving maneuvers. Novel algorithms are developed for the left-to-right torque vectoring control on each axle and for the front-to-rear torque vectoring distribution action.
Journal Article

Development of a Fuzzy Slip Control System for Electric Vehicles with In-wheel Motors

A two-passenger all-wheel drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors and an active steering system has been designed and developed at the University of Waterloo. A novel fuzzy slip control system is developed for this vehicle using the advantage of four in-wheel motors. A conventional slip control system uses the hydraulic brake system in order to control the tire slip ratio, which is the difference between the wheel center velocity and the velocity of the tire contact patch along the wheel plane, thereby influencing the longitudinal dynamics of a vehicle. The advantage of the proposed fuzzy slip controller is that it acts as an ABS system by preventing the tires from locking up when braking, as a TCS by preventing the tires from spinning out when accelerating.