Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine

2017-03-28
2017-01-0663
In a Spark-Ignited engine, there will come a point, as load is increased, where the unburned air-fuel mixture undergoes auto-ignition (knock). The onset of knock represents the upper limit of engine output, and limits the extent of engine downsizing / boosting that can be implemented for a given application. Although effective at mitigating knock, requiring high octane fuel is not an option for most markets. Retarding spark timing can extend the high load limit incrementally, but is still bounded by limits for exhaust gas temperature, and spark retard results in a notable loss of efficiency. Likewise, enriching the air-fuel mixture also decreases efficiency, and has profound negative impacts on engine out emissions. In this current work, a Direct-Injected, Boosted, Spark-Ignited engine with Variable Valve Timing was tested under steady state high load operation. Comparisons were made among three fuels; an 87 AKI, a 91 AKI, and a 110 AKI off-road only race fuel.
Technical Paper

Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver

2021-09-05
2021-24-0057
Among the others, natural gas (NG) is regarded as a potential solution to enhance the environmental performance of internal combustion engines. Low carbon-to-hydrogen ratio, worldwide relatively homogeneous distribution and reduced price are the reason as, lately, many researchers efforts have been put in this area. In particular, this work focuses on the characterization of the injection process inside a constant volume chamber (CVC), which could provide a contribution to the development of direct injection technologies for a gaseous fuel. Direct injection of a gaseous fuel involves the presence of under-expanded jets whose knowledge is fundamental to achieve the proper mixture formation prior to the combustion ignition. For this reason, a density based solver was developed within the OpenFOAM library in order to simulate the jet issued from an injector suitable for direct injection of methane.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Tomography of a GDI Spray by PolyCO Based X-Ray Technique

2013-09-08
2013-24-0040
In this paper the investigation with X-ray Tomography on the structure of a gasoline spray from a GDI injector for automotive applications based on polycapillary optics is reported. Table-top experiment using a microfocus Cu Kα X-ray source for radiography and tomography has been used in combination with a polycapillary halflens and a CCD detector. The GDI injector is inserted in a high-pressure rotating device actuated with angular steps Δθ = 1° at the injection pressure of 8.0 MPa. The sinogram reconstruction of the jets by slices permits a 360° spray access to the fuel downstream the nozzle tip. A spatial distribution of the fuel is reported along the direction of six jets giving a measure of the droplet concentration in a circle of 16 mm2 below the nozzle tip at atmospheric backpressure and ambient temperature.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

The Effects of Oxygenated Biofuel on Intake Oxygen Concentration, EGR, and Performance of a 1.9L Diesel Engine

2010-04-12
2010-01-0868
Exhaust gas recirculation (EGR) has been employed in a diesel engine to reduce NOx emissions by diluting the fresh air charge with gases composed of primarily N2, CO2, H2O, and O2 from the engines exhaust stream. The addition of EGR reduces the production of NOx by lowering the peak cylinder gas temperature and reducing the concentration of O2 molecules, both of which contribute to the NOx formation mechanism. The amount of EGR has been typically controlled using an open loop control strategy where the flow of EGR was calibrated to the engine speed and load and controlled by the combination of an EGR valve and the ratio of the boost and exhaust back pressures. When oxygenated biofuels with lower specific energy are used, the engine control unit (ECU) will demand a higher fuel rate to maintain power output, which can alter the volumetric flow rate of EGR. In addition, oxygenated biofuels affect the oxygen concentration in the intake manifold gas stream.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Target Based Rapid Prototyping Control System for Engine Research

2006-04-03
2006-01-0860
Today's advanced technology engines have a high content of electronic actuation requiring sophisticated real-time embedded software sensing and control. To enable research on such engines, a system with a flexible engine control unit (ECU) that can be rapidly configured and programmed is desired. Such a system is being used in the Advanced Internal Combustion Engine (AICE) Laboratories at Michigan Tech University (MTU) for research on a multi-cylinder spark-ignited gasoline, a high pressure common rail diesel and a single cylinder alternative fuels research engine. The system combines a production ECU with a software development system utilizing Mathworks Simulink/Stateflow © modeling tools. The interface in the Simulink modeling environment includes a library of modeling and interface blocks to the production Operating System (OS), Low Level Drivers (LLD) and CAN-based calibration tool.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

2013-04-08
2013-01-0249
The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Journal Article

Study of Basic Injection Configurations using a Direct-Injection Hydrogen Research Engine

2009-04-20
2009-01-1418
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for fuel cells as well as IC engines and hence it is widely regarded as the energy carrier of the future. The potential of hydrogen as an IC engine fuel can be optimized by direct injection (DI) as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently the engine efficiency and exhaust emissions. This paper studies a single-hole nozzle and examines the effects of injection strategy on engine efficiency, combustion behavior and NOx emissions. The experiments for this study are done on a 0.5 liter single-cylinder research engine which is specifically designed for combustion studies and equipped with a cylinder head that allows side as well as central injector location.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
Technical Paper

Stochastic Knock Detection Model for Spark Ignited Engines

2011-04-12
2011-01-1421
This paper presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. The SKD set consists of a Knock Signal Simulator (KSS) as the plant model for the engine and a Knock Detection Module (KDM). The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Spray Characterization of a Single-Hole Gasoline Injector under Flash Boiling Conditions

2014-11-11
2014-32-0041
In the next future, improvements of direct injection systems for spark-ignited engines are necessary for the potential reductions in fuel consumptions and exhaust emissions. The admission and spread of the fuel in the combustion chamber is strictly related to the injector design and performances, such as to the fuel and environmental pressure and temperature conditions. In this paper the spray characterization of a GDI injector under normal and flash-boiling injection conditions has been investigated. The paper is mainly focused both on the capability of the injection apparatus/temperatures controller system to realize flash-boiling conditions, and the diagnostic setup to catch the peculiarities of the spray behavior. The work aims reporting the spray characterization under normal and flash-boiling conditions.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Simultaneous Shadowgraph/Mie Scattering Imaging of Liquid and Vapor Phases of Diesel Sprays and Validation of a Numerical Model

2014-10-13
2014-01-2744
Diesel sprays from an axially-disposed single-hole injector are studied under both non-vaporizing and vaporizing conditions in a constant-volume vessel. A hybrid shadowgraph/Mie-scattering imaging set-up is used to acquire the liquid and vapor phases of the fuel distribution in a near-simultaneous visualization mode by a high-speed camera (40,000 fps). A diesel injector with k0 factor is used, having the exit-hole diameter of 0.1 mm and the ratio L/d =10. The studies are performed at the injection pressures of 70, 120, and 180 MPa, 25.37 kg/m3 ambient gas density, at the environment temperature of 373, 453 and 900 K. The instantaneous tip penetration of the liquid and vapor phases is extracted from the collected images and processed by a properly assessed software, under the various operating conditions. The AVL FIRE™ code is also used to simulate the spray dynamics. The model is validated on the ground of the collected experimental data.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
Technical Paper

Real Time Control of GDI Fuel Injection during Ballistic Operation Mode

2015-09-06
2015-24-2428
Gasoline direct injection (GDI) combustion with un-throttled lean stratified operation allows to reduce engine toxic emissions and achieve significant benefits in terms of fuel consumption. However, use of gasoline stratified charges can lead to several problems, such as a high cycle-to-cycle variability and increased particle emissions. Use of multiple injection strategies allows to mitigate these problems, but it requires the injection of small fuel amounts forcing the traditional solenoid injectors to work in their “ballistic” region, where the correlation between coil energizing time and injected fuel amount becomes highly not linear. In the present work a closed-loop control system able to manage the delivery of small quantities of fuel has been introduced. The control system is based on a particular feature found on the coil voltage command signal during the de-energizing phase.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

2019-04-02
2019-01-1160
A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near top dead center (TDC) conditions in compression ignition (CI) engines was modified with post pre-burn gas induction to incorporate premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing, and limitations of the induction systems were studied. As a result of this study, the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system post pre-burn were conducted to determine the temperature limit of the methane auto-ignition.
X