Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Vehicle Handling Dynamics with Uncertainty Using Chebyshev Interval Method

2014-04-01
2014-01-0720
Vehicle systems often operate with some degree of uncertainty. This study applies the Chebyshev interval method to model vehicle dynamic systems operating in the presence of interval parameters. A full vehicle model is used as the numerical model and the methodology is illustrated on the steering wheel angle pulse input test. In the numerical simulation, suspension stiffness coefficients and suspension damping coefficients are chosen as interval parameters and lateral acceleration and yaw rate are chosen to capture vehicle dynamic characteristics. System responses in time domain are validated against Monte Carlo simulations and against the scanning approach. Results indicate that the Chebyshev interval method is more efficient than Monte Carlo simulations. The results of scanning method are similar to the ones obtained with the Chebyshev interval method.
Technical Paper

Trajectory Planning of Autonomous Vehicles Based on Parameterized Control Optimization for Three-Degree-of-Freedom Vehicle Dynamics Model

2024-04-09
2024-01-2332
In contemporary trajectory planning research, it is common to rely on point-mass model for trajectory planning. However, this often leads to the generation of trajectories that do not adhere to the vehicle dynamics, thereby increasing the complexity of trajectory tracking control. This paper proposes a local trajectory planning algorithm that combines sampling and sequential quadratic optimization, considering the vehicle dynamics model. Initially, the vehicle trajectory is characterized by utilizing vehicle dynamic control variables, including the front wheel angle and the longitudinal speed. Next, a cluster of sampling points for the anticipated point corresponding to the current vehicle position is obtained through a sampling algorithm based on the vehicle's current state. Then, the trajectory planning problem between these two points is modeled as a sequential quadratic optimization problem.
Technical Paper

The Effect of Friction on Ride Comfort Simulation and Suspension Optimization

2020-04-14
2020-01-0765
The design of suspension affects the vehicle dynamics such as ride comfort and handling stability. Nonlinear characteristics and friction are important characteristics of suspension system, and the influence on vehicle dynamic performance cannot be ignored. Based on the seven-degree-of-freedom vehicle vibration nonlinear model with friction, the vibration response process of the vehicle and the influence of suspension friction on vehicle ride comfort and suspension action process were studied. The results show that friction will significantly affects the simulation of ride comfort and coincide with the function of the shock absorber. The suspension shock absorbers of vehicles were optimized with and without suspension friction. The results showed that the suspension tended to choose softer shock absorbers when there was friction. However, both of the two optimizations are able to improve the ride comfort of vehicles, and the simulation results were similar.
Technical Paper

Synthesis and Analysis of the Double-Axle Steering Mechanism Considering Dynamic Loads

2008-04-14
2008-01-1105
This paper investigates a hierarchical optimization procedure for the optimum synthesis of a double-axle steering mechanism by considering the dynamic load of a vehicle which is seldom discussed in the previous literature. Firstly, a multi-body model of double-axle steering is presented by characterizing the detailed leaf spring effect. Accordingly, the influences of dynamic load including the motion interference of steering linkage resulted from the elastic deformation of leaf spring, and the effects of wheel slip angle and the position discrepancy of wheel speed rotation centers are explored systematically. And then, a hierarchical optimization method based on target cascading methodology is proposed to classify the design variables of double-axle steering mechanism into four levels. At last, a double-axle steering mechanism of a heavy-duty truck is utilized to demonstrate the validity of this method.
Technical Paper

Study on the Torque Distribution of Wheel-Track Hybrid Drive Vehicles during Pass Shoreline

2023-04-11
2023-01-0784
To study the torque distribution of track and tire in the wheel-track hybrid drive vehicle driving along the shoreline, an analysis model of wheel-track hybrid drive vehicle was established by using multi-body dynamics (MBD), discrete element (DEM), and shoreline pavement construction methods. The vehicle speed, acceleration, torque, vertical load, sinkage, slip, and other indicators when the vehicle passes the shoal at different wheel speed of rotation are analyzed. The relationships between wheel speed of rotation and slip, sinkage and slip, and vertical load and driving moment were studied, and the laws that the sinkage of tires and tracks is positively related to their slippage and the driving moment of wheels and tracks is positively related to their vertical load were obtained.
Technical Paper

Study on Vibration Reduction Technology for Transportation of TEG Dehydration Unit Regeneration Module

2021-04-06
2021-01-0334
In the petroleum and gas industry, cargo truck is one of the most important ways to transfer the skid-mounting from the manufacturer to the job location. Under the condition of bumpy road surface, the random vibration from the ground can easily cause the resonance of the internal equipment components of the skid-mounting, produce large deformation in the pipeline and equipment connection, and even the equipment will be damaged. In this paper, the finite element analysis model and dynamic rigid flexible coupling model of a TEG (Triethyleneglycol) dehydration unit regeneration skid-mounting are established by using the finite element analysis and multi-body dynamics software. The modal analysis of the skid and the vibration of the whole vehicle under different road excitation and driving conditions are carried out. Two solutions are proposed to improve the anti-vibration ability of the skid, and comparative analysis is made.
Technical Paper

Robust Design for Vehicle Ride Comfort and Handling with Multi-Objective Evolutionary Algorithm

2013-04-08
2013-01-0415
As is known to all, there are some contradictions between the handling and ride performance during the design process of vehicles. Sometimes owing to serious collisions of each criterion in the high-dimensional solution space, the common method to deal with the contradiction is to transform into a single target according to weights of each objective, which may not obtain a desired result. A multi-criteria approach is therefore adopted to optimize both properties and the result of a multi-criteria design is not a unique one but a series of balanced solutions. This paper is focused on the robust design of a simplified vehicle model in terms of not only ride comfort but also handling and stability using a multi-objective evolutionary algorithm (MOEA) method. Using the proposed method, the conflicting performance requirements can be better traded off. One of the most important indexes to characterize the vertical ride comfort is the acceleration of the sprung mass.
Technical Paper

Robust Design Optimization of an Shock Absorber for Enhancing Ride Performance

2013-04-08
2013-01-0995
There are many uncertain parameters in shock absorbers, which are induced by the manufacturing error, the wear of components and the aging of materials in real vehicle environment. These uncertainties often cause some deterioration of vehicle performance. To optimize the ride characteristic of a vehicle when the shock absorber includes uncertain parameters, the robust design method is used. In this paper, a Twin Tube shock absorber fluid system model has established on the multi-domain modeling environment. This model not only includes the commonly used parameters of the shock absorber but also takes into account the structure parameters of various valves in the shock absorber, which is more detailed and accurate than those models in the past literature. The robust design of the shock absorber parameters is successfully approached using the co-simulation technique, and the ride comfort performance of the vehicle is also improved.
Journal Article

Road-Feeling Simulation of SBW System Based on Kalman Filter Fusion Estimation

2023-04-11
2023-01-0779
Due to the elimination of the mechanical connection between the steering column and steering gear in the Steer-by-Wire (SBW) system, the road-feeling simulation is mainly supplied by the road-feeling motor which loads a drag torque on the steering wheel rather than the actual torque transmitted from the road. To obtain more realistic steering wheel torque, a novel feedback torque of the road-feeling motor fusion estimation method based on the Kalman filter is presented in this paper. Firstly, the model-based estimation method is utilized to estimate the aligning torque between tires and ground which is converted into the rack force through the steering system. Then the estimated rack force is used as the observed data for the Kalman Filter of the sensor-based method and the Kalman Filter-based fusion estimation method is resulted, through which the more realistic feedback torque of the road-feeling motor can be obtained.
Technical Paper

Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model

2015-04-14
2015-01-0433
A new recursive method is presented for real-time estimating the inertia parameters of a vehicle using the well-known Two-Degree-of- Freedom (2DOF) bicycle car model. The parameter estimation is built on the framework of polynomial chaos theory and maximum likelihood estimation. Then the most likely value of both the mass and yaw mass moment of inertia can be obtained based on the numerical simulations of yaw velocity by Newton method. To improve the estimation accuracy, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. The results of the simulation study suggest that the proposed method can provide quick convergence speed and accurate outputs together with less sensitivity to tuning the initial values of the unidentified parameters.
Technical Paper

Parameter Sensitivity Analysis of a Light Duty Truck Steering Returnability Performance

2017-03-28
2017-01-0428
Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
Technical Paper

Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling

2010-04-12
2010-01-0912
To solve the dynamic response problem that contains uncertain parameters needs, the stochastic differential equations needs to be calculated. Interval analysis has been widely used to solve engineering problems which contain many uncertain parameters usually. But the numerical solution method for stochastic differential equations based on the interval analysis method was seldom investigated. In this study a new numerical interval method for the stochastic differential equations based on the Euler's method is presented, which can be used to solve the linear system effectively and efficiently. The probabilistic and interval dynamics analysis of a two-degree-of-freedom bike car model with uncertain parameters are presented.
Technical Paper

Neural-Network-Based Suspension Kinematics and Compliance Characteristics and Its Implementation in Full Vehicle Dynamics Model

2022-03-29
2022-01-0287
Suspension kinematics and compliance strongly influence the handling performance of the vehicle. The kinematics and compliance characteristics are determined by the suspension geometry and stiffness of suspension bodies and elastic components. However, it is usually inefficient to model all the joints, bushings, and linkage deformation in a full vehicle model. By transforming the complex modeling problem into a data-driven problem tends to be a good solution. In this research, the neural-network-based suspension kinematics and compliance model is built and implemented into a 17 DOF full vehicle model, which is a hybrid model with state variables expressed in the global coordinate system and vehicle coordinate system. The original kinematics and compliance characteristics are derived from multibody dynamics simulation of the suspension system level.
Technical Paper

Multi-objective Optimization of the PMS Based on Non-dominated Sorting Genetic Algorithm II

2015-04-14
2015-01-1675
In order to reasonably match the variable stiffness and location of the Powertrain Mounting System (PMS) and optimize the ride comfort of commercial vehicle, a thirteen degrees of freedom (DOF) model of a commercial vehicle was established in Adams/view. Specially, the support rod installed on the upside of the transmission case was modeled as a flexible body. The vibration isolation provided by the PMS was evaluated in three aspects: the energy decoupling of the powertrain, the response force of the mount and the displacement of the powertrain. The energy decoupling ratio, the force RMS of the mount when force excitation was applied on the powertrain and the displacement of the powertrain Center of Gravity (C.G) when displacement excitation was applied on the vehicle chassis were selected as the optimal target. Adams and MATLAB were integrated into the optimization software iSIGHT to optimize the PMS. NSGA-II is used to obtain some Pareto-optimal solutions of PMS.
Technical Paper

Multi-domain Modeling and Simulation of Vehicle Thermal System Based on Modelica

2014-04-01
2014-01-1183
Vehicle Thermal Management System (VTMS) is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, driver/passenger comfort, emissions. This paper presents a novel methodology to investigate VTMS based on Modelica language. A detailed VTMS platform including engine cooling system, lubrication system, powertrain system, intake and exhaust system, HVAC system is built, which can predict the steady and transient operating conditions. Comparisons made between the measured and calculated results show good correlation and approve the forecast capability for VTMS. Through the platform a sensitivity analysis is presented for basic design variables and provides the foundation for the design and matching of VTMS. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to model and simulate VTMS.
Technical Paper

Dynamic Modeling of Quadrotor-Slung-Load System: A Model Based on the Quasi-Coordinates Approach

2024-04-09
2024-01-2312
With the development of hardware and control theory, the application of quadcopters is constantly expanding. Quadcopters have emerged in many fields, including transportation, exploration, and object grabbing and placement. These application scenarios require accurate, stable, and rapid control, and a suitable dynamic model is one of the prerequisites. At present, many works are related to it, most of which are modeled using the Newton-Euler method. Some works have also adopted other methods, including the Lagrangian and Hamiltonian methods. This article proposes a new method that solves the Hamiltonian equation of a quadcopter expressed in quasi-coordinate. The external forces and motion of the body are expressed in the quasi-coordinate system of the body, and solved through the Hamiltonian equation. This method simplifies operations and improves computational efficiency. Additionally, a single pendulum is attached to the quadcopter to simulate application scenarios.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

A Novel Torque Distribution Approach of Four-Wheel Independent-Drive Electric Vehicles for Improving Handling and Energy Efficiency

2024-04-09
2024-01-2315
This paper presents a torque distribution strategy for four-wheel independent drive electric vehicles (4WIDEVs) to achieve both handling stability and energy efficiency. The strategy is based on the dynamic adjustment of two optimization objectives. Firstly, a 2DOF vehicle model is employed to define the stability control objective for Direct Yaw moment Control (DYC). The upper-layer controller, designed using Linear Quadratic Regulator (LQR), is responsible for tracking the target yaw rate and target sideslip angle. Secondly, the lower-layer torque distribution strategy is established by optimizing the tire load rate and motor energy consumption for dynamic adjustment. To regulate the weights of the optimization targets, stability and energy efficiency allocation coefficient is introduced. Simulation results of double lane change and split μ road conditions are used to demonstrate the effectiveness of the proposed DYC controller.
Technical Paper

A Multibody Model for Riderless Bicycle Dynamics Considering Tire Characteristics

2023-04-11
2023-01-0783
A multibody model for riderless bicycle dynamics considering tire characteristics is presented. A riderless bicycle is regarded as a multibody system consisting of four rigid bodies: rear wheel, frame, front fork, and front wheel. Every two bodies are connected with a revolute joint. The mass center coordinates and Euler angles of the rigid bodies are used as the generalized coordinates to describe their positions and orientations. The system equations of motion are obtained using Lagrange equations of the first kind. Due to the existence of the three revolute constraints and the use of dependent generalized coordinates, the Lagrange multipliers are employed to account for revolute reaction forces. As for the contact between the wheel and the ground, many studies regarded the wheel as a rigid body with a knife edge, which lead to the nonholonomic constraints between the wheel and the ground.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

2008-04-14
2008-01-0603
Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.
X