Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Polaroid”

1937-01-01
370124
THE perfect, hypothetical headlight is visualized, and a set of standards formulated that makes night driving as safe as day driving, with the illumination invisible to approaching cars. Theory of glare elimination with polarized light is presented. The nature of “Polaroid” and how it solves the problem is pointed out. The new engineering and lighting problems, which the use of this material involves, are discussed. Examples of the use of the new control of light for industry are related.
Technical Paper

“Phoenix”- A Polyester-Film Inflatable Man-Powered Aircraft

1984-02-01
840028
This paper describes some of the design solutions adopted in solving two major problems besetting man-powered aircraft in use: that of breakage and storage. It describes work leading up to the building and testing of “Phoenix”, a man-powered aircraft with a polyester-film inflatable wing. The paper deals mainly with aspects relating to the wing design and construction.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

“Clear Vision” Automatic Windshield Defogging System

2004-03-08
2004-01-1373
The present paper describes the system design for the Clear Vision auto defog system and the improvements made to the Integrated Dew Point and Glass Temperature (IDGT) sensor. The Clear Vision auto defog system has been implemented on a 2000 Cadillac DeVille. Preliminary validation tests demonstrate satisfactory performance.
Technical Paper

“CDaero” - A Parametric Aerodynamic Drag Prediction Tool

1998-02-23
980398
The objective of the development of the aerodynamic drag predictive tool CDaero was for use as a module for the Automobile Design Support System (AutoDSS). CDaero is an empirically based drag coefficient predictive tool based initially on the MIRA (Motor Industry Research Association) algorithm. The development philosophy was to be able to predict the aerodynamic drag coefficient of an automobile with knowledge of the features of the surface geometry control curves. These are the curves that control the 3-dimensional geometry as seen in the profile, plan and front and rear views. CDaero has been developed in a computing environment using the equation solver TKSolver™. Fifty-one input feature values are first determined from the automobile geometry and then entered into the program. CDaero models the drag coefficient with thirteen different components covering the basic body, as well as additional components such as the wheels, mud flaps, etc.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Zinc-Nickel Alloy Coatings-A Technical Review of Published Literature

1990-02-01
900718
The process considerations, manufacturability, corrosion properties, paintability, weldability, and formability of nominal 9 to 15 percent electrodeposited zinc-nickel (Zn-Ni) alloy-coated sheet steels for automotive applications were reviewed. Zn-Ni coatings were selected for use in automobile body panels by several automakers because of their ease of manufacturing, forming, and welding. Although Zn-Ni coatings may be easily manufactured into autobody panels without a change in production procedures, these coatings exhibit poor paintability and poor corrosion resistance, and would be risky to expose in the U.S. automotive environment at the specified 20 to 40 g/m2 coating weights. Zn-Ni coatings will not provide the cosmetic corrosion protection of zinc or zinc-iron (Zn-Fe) coatings, particularly on exterior autobody panels in a fully painted condition.
Technical Paper

Zinc-Manganese Alloy Electroplated Steel for Automotive Body

1986-02-01
860268
Zinc-manganese alloy electroplated has been developed for automotive body panel applications. The product is manufactured on a conventional electrogalvanizing line using an electrolyte containing zinc sulfate, manganese sulfate and sodium citrate. Electroplated steel with an alloy content of 30-50% manganese exhibits excellent corrosion resistance both as-produced and after painting. Zinc-manganese coatings also show good workability and voidability. Accordingly, this product is suitable for both unexposed parts and the interior surfaces of exposed parts. Finally, zinc-manganese electroplated steel displays good wet adhesion and anti-cratering characteristics so that the product can also be used for exposed applications as automotive body panels.
Technical Paper

Zinc Electrochemical Metallizing for Corrosion Protection of Automobile Wheel Hubs

1991-10-01
912288
Many papers have been written for SAE on electrochemical metallizing, a modern term for “selective” or “brush” plating. These papers have dealt primarily with the aerospace industry, including the use of non-embrittling cadmium LHE® coatings for corrosion protection on aircraft. Shadowed by 30 years of successes in the aerospace industry, electrochemical metallizing corrosion protection in the automotive industry is often overlooked. Specifically, the use of selectively applied zinc coatings for corrosion protection on wheel hubs during manufacture has proven integral at several European automotive manufacturers. In the past, environmental conditions have corroded both the hubs and wheels of automobiles. Quite often the corrosion is in the microscopic gap between the hub and the wheel, which over time causes the wheel to seize and prevents removal. This has been frustrating to both stranded motorists and shop mechanics.
Technical Paper

Xenon with Integrated Starter – The Powerful Way for Improved HID Headlighting

2000-03-06
2000-01-0805
HID as lightsource in the automotive world has been proven as the most efficient way to satisfy the main user's requirements on a headlighting bulb: Realize a broad beam pattern with superior performance on visibility, safety and comfort on the one hand, and the fulfillment of long lifetime requirements on the other hand. In the second step, the logical integration of functions and the improvement of automotive system requests such as size and EMC has to be covered. An integrated bulb with starter is the appropriate way to combine these features: Optimized fine tuning between the entire lightsource and the starter to reach optimal electrical and EMI performance on the one side on the other side combined with very compact sizes leads to an automotive source perfectly suiting to the modern trends in headlighting applications.
Technical Paper

Xenon Light for Main and Dipped Beam

1998-02-23
980005
Xenon (HID) technology is one of the mile-stones in developing process of car lighting. The first step was to combine this technology with free-form reflector technology. The result was a high performance dipped beam beam-pattern with three times more light output compared to a halogen system. The next step of improvement is “Bi-Xenon”. It makes sense to use the enormous light output of a Xenon light source for two light functions (Main beam and dipped beam) in a single pocket headlamp system. This leads to new lighting performance and design freedom in headlamp technology. In this paper the technological aspects of system realization will be described. New solutions in lighting strategy including modern actuators which handle optical elements to switch between two light functions had to be found.
Technical Paper

X-Ray Curing of Carbon Fiber Composites for Structural Automotive Components

2017-03-28
2017-01-0504
Having demonstrated the feasibility of using X-rays derived from high current industrial electron beam accelerators (EB) to cure the matrices of carbon fiber composites and then scaled this up to cure large sized, non-structural automobile components, performance car hoods, the New York State Vehicle Composites Program had a chassis designed, a cured epoxy mold made and then the chassis matrix cured using X-rays with a formulated radiation responsive matrix material. A feasibility study had shown how X-rays could cure through materials embedded within the composite layers, such as metal inserts that could be used for mechanical fastening without fracturing the composite. In producing X-ray cured hoods, the power consumption for X-ray curing was found to be more than 20% lower than that needed for autoclave curing the same sized hoods using conventional thermosetting pre-pregs. More significant was the time-to-cure.
Technical Paper

World Harmonization and Procedures for Lighting and Signaling Products

1997-02-24
970913
Lighting and signaling regulations vary considerably around the world. There are 3 main regulatory regions: the United States, Europe and Japan. Rules vary in scope as well as in strictly technical requirements. The ECE has published the most comprehensive regulations, covering even headlamp leveling and cleaning devices. Japan has, for the time being, the least extensive ones. Standard lamp Regulations are pretty much alike, with the center high mounted stop lamp being the most notable exception. The most pronounced differences are for headlamps: all values above the horizon line are lower in Europe where being dazzled is not accepted. The cutoff line is also sharper in Europe, where visual aim has been common practice for 70 years. Europe specifies amber rear side markers and amber rear turn signals but prohibits red contour markings as well as rear turn signals and red rear side markers. Differences are more acute in the field of procedures.
Technical Paper

Work-Energy Relationships for the Collinear Single Degree of Freedom Impact Model under the Case of Net Unbalanced Externally Applied Forces

2013-04-08
2013-01-0794
Externally applied unbalanced forces and their corresponding impulses are generally excluded from consideration in regards to the evaluation of the collision phase events for a system comprised of two motor vehicles undergoing collinear impact. This exclusion is generally warranted secondary to the fact that the collision force and its corresponding impulse are dominant during the collision phase. Conceptually, two exclusions exist to this approach. The first is the situation in which significant physical restraints are present to the displacement of one or both collision partners and are of sufficient magnitude as to require inclusion. Generally, this represents the exceptional case and includes, but is not limited to, situations in which one vehicle is snagged, in a non-eccentric manner, by a rigid narrow-width object such as a pole or other similar restraint, prior to the occurrence of the subsequent vehicle-to-vehicle collision under evaluation.
Technical Paper

Wiper Systems With Flexible Structures - Instabilities Analysis and Correlation with a Theoretical Model

2005-05-16
2005-01-2375
Optimizing the wiper system performance motivates the design engineer to create a product as robust as possible against the occurrence of wipe defects related to vibratory phenomena between the rubber blade and the windshield. In some configurations, these vibrations generate visual or audible annoyance for the driver. These instabilities phenomena only appear under specific operating and environmental conditions characterized by windshield moisture and cleanness, contact pressure of the rubber blade on the glass, attack angle of the wiper blade on the windshield, component stiffness, windshield curvature etc. In the process of eliminating all potential instabilities, modeling the wiper system structures can contribute to understand its working dynamics. Therefore, a new computation tool is developed and validated by experimentation on a specific test bench.
Journal Article

Wiper System Dynamic Forces: from the Test Bench to the Vehicle

2016-06-15
2016-01-1801
Acoustic comfort inside the vehicle is required whenever a wiper system is in function: front wiper motor noise is of great influence on the global comfort and its perception inside the car is 100% due to transmission of vibrations through wiper system fixation points on the vehicle. As any active source, both car manufacturer and system supplier need to be involved, at early stages of project development, in order to master the vibroacoustic integration of the system into the vehicle. This paper presents an experimental methodology dedicated to the front wiper system that offers the possibility to estimate the acoustic comfort inside the vehicle during project deployment phase, when modifications can still be proposed. Based on the XP-R-19701 standard, the procedure allows to measure, on a bench, the dynamic forces transmitted via the fixation points and details how to transpose them to the vehicle, taking into account the different specificities of the wiper system.
Technical Paper

Wiper System Dynamic Behavior

1997-02-24
970588
In this paper are presented some results about the dynamic of the wiper systems, vibratory phenomena and some influences of the friction, the weight and the clearances.
X