Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“ACCU-DRIVE” STABILITY WITH COMFORT THE 1969 BUICK CHASSIS

1969-02-01
690490
Buick engineers are well pleased with their '69 Chassis. Benefits of a unique front suspension camber curve are documented. The effects of various suspension parameters on ride and handling are explained. These were varied independently of one another in the course of evaluating over 30 suspension configurations.
Technical Paper

the design of Planetary Gear Trains

1959-01-01
590059
THE usefulness of planetary gear trains and the engineering techniques necessary for optimum design are discussed in this paper. A simple method for calculating planetary gear ratios is described which can be used to determine quickly the potential usefulness of any planetary configurations. The author lists criteria which help to evaluate the potential of a planetary gear train schematic from the standpoints of gear noise and structural viewpoint. Detailed design of individual members include spacing of the pinions, mounting considerations, thrust direction, lubrication, and stress evaluation.
Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Yaw Testing of an Instrumented Vehicle with and without Braking

2004-03-08
2004-01-1187
Two methods for calculating speed from curved tire marks were investigated. The commonly used critical speed formula and a computer simulation program were evaluated based on their ability to reproduce the results of full-scale yaw tests. The effects of vehicle braking and friction coefficient were studied. Twenty-two yaw tests were conducted at speeds between 70 and 120 km/h. For half of the tests, about 30% braking was applied. Using the measured sliding coefficient of friction, both the critical speed formula and the computer simulations under-predicted the actual speed of the vehicle. Using the measured peak coefficient of friction, both methods over-estimated the actual speed. There was less variance in the computer simulation results. Braking tended to increase the speeds calculated by the critical speed formula.
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

Yaw Rate Sensor for Vehicle Dynamics Control System

1995-02-01
950537
From the beginning of 1995 on, RB will start the production of the Vehicle Dynamics Control System. A key part of this system is the Yaw Rate Sensor described in this paper. The basic requirements for this sensor for automotive applications are: mass producibility, low cost, resistance against environmental influences (such as temperature, vibrations, EMI), stability of all characteristics over life time, high reliability and designed-in safety. Bosch developed a sensor on the basis of the “Vibrating Cylinder”. The sensor will be introduced into mass production in beginning of 1995.
Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
Technical Paper

Yaw Moment Control of the Vehicle by Means of a Magnetorheological Semi-Active Differential

2015-09-06
2015-24-2529
A new controllable limited slip differential is proposed and tested in software environment. It is characterized by the employment of a magnetorheological fluid, which presents the property of changing its rheology thanks to an applied magnetic field. A vehicle model has been designed and employed for the synthesis of a sliding controller. The control is based on a double level scheme: the upper controller aims to generate the target locking torque, while the lower controller generates, as control action, the supply current for the controllable limited slip differential. The obtained results show the effectiveness of the device in terms of vehicle dynamics improvement. Indeed, the results reached by the vehicle in presence of the new differential confirm the improved performances for both steady and unsteady state manoeuvres.
Technical Paper

Yaw Instability Due to Longitudinal Load Transfer During Braking in a Curve

1999-08-17
1999-01-2952
Active vehicle dynamics control ensures improved safety. So far, yaw instability is mostly associated with transient steering manoeuvres when driving at a constant speed. However, braking related load transfer affects yaw stability. Intense braking at high friction combined with elevated and forwarded CG amplifies this influence on unloaded tractors. Designing a dynamic stability system to enhance active safety requires fresh insight into braking related yaw instability. This investigation covers a theoretical analysis of braking influence on yaw stability on unloaded 4×2 tractors, being applicable to vehicle braking while cornering, including steering induced by other asymmetrical forces, since it focuses essentially on small steering angles.
Technical Paper

X-Ray Determination of Residual Stresses and Hardness in Steel Due to Thermal, Mechanical, and Fatigue Deformations

1962-01-01
620053
Residual stress and hardness in steel due to thermal, mechanical, and fatigue deformations are determined by an X-ray diffraction method. The sharp temperature rise associated with electrical discharge machining causes austenitizing, rehardening, and tempering, and results in high tensile residual stress. Shot-peening quality is evaluated from residual stress and hardness induced by the peening. Rolling contact fatigue of carburized and hardened bearings causes a transformation of austenite to martensite, and thereby generates more residual compression, and also causes permanent fatigue softening. Less softening is observed in inner races of consutrode and cross-forged steels than in air-melted steel, and the former steels exhibit greater fatigue life at early and mean failure levels.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Work-Energy Relationships for the Collinear Single Degree of Freedom Impact Model under the Case of Net Unbalanced Externally Applied Forces

2013-04-08
2013-01-0794
Externally applied unbalanced forces and their corresponding impulses are generally excluded from consideration in regards to the evaluation of the collision phase events for a system comprised of two motor vehicles undergoing collinear impact. This exclusion is generally warranted secondary to the fact that the collision force and its corresponding impulse are dominant during the collision phase. Conceptually, two exclusions exist to this approach. The first is the situation in which significant physical restraints are present to the displacement of one or both collision partners and are of sufficient magnitude as to require inclusion. Generally, this represents the exceptional case and includes, but is not limited to, situations in which one vehicle is snagged, in a non-eccentric manner, by a rigid narrow-width object such as a pole or other similar restraint, prior to the occurrence of the subsequent vehicle-to-vehicle collision under evaluation.
Technical Paper

Wireless Communication-The Link Between the Rolling Lan and the Rest of the World

1998-10-19
98C016
Over the past years many have been predicting various dramatic changes in the vehicle including automatic route guidance, the office in the vehicle, and the auto PC. There are a number of factors which need to come together before significant momentum can develop toward realizing any of these predictions. This paper enumerates these factors and explores the current state and possible evolution of each. While each of these factors could stall progress, the linchpin is likely to be wireless communication. The current state of wireless and its capabilities going forward are examined in depth.
Technical Paper

Windshield Wiper Linkage Analysis

1971-02-01
710254
The Kinematic Analysis Methods Computer Program that has been used by Ford Motor Co. to evaluate mechanisms for the past four years has been modified to generate performance curves for windshield wiper linkages directly using a Calcomp Plotter. Problems such as stalling, “jerky” operation, and excessive phase lag between wipers can be detected early in the design stages by careful evaluation of the curves.
Technical Paper

Wind-Tunnel and On-Road Wind Noise: Comparison and Replication

2013-04-08
2013-01-1255
A KIA Soul was instrumented to measure the relative velocity (magnitude and yaw angle) at the front of the vehicle and in-cabin sound at a location close to the side glass near the A-pillar vortex impingement. Tests were conducted at a proving ground under a range of conditions from low wind conditions (~3 m/s) to moderate (7-8 m/s) wind speeds. For any given set of atmospheric conditions the velocity and sound data at any given position on the proving ground were noted to be very repeatable, indicating that the local wakes dominated the "turbulent" velocity field. Testing was also conducted in an aeroacoustic wind tunnel in smooth flow and with a number of novel turbulence generating methods. The resulting sounds were analyzed to study the modulation at frequencies likely to result in fluctuation strength type noise.
Technical Paper

Wind-Tunnel Tests of Vehicle Cooling System Performance at High Blockage

2000-03-06
2000-01-0351
Wind tunnels provide a convenient, repeatable method of assessing vehicle engine cooling, yet important draw-backs are the lack of a moving ground and rotating wheels, blockage constraints and, in some tunnels, the inability to simulate ambient temperatures. A series of on-road and wind-tunnel experiments has been conducted to validate a process for evaluating vehicle cooling system performance in a high blockage aerodynamic wind tunnel with a fixed ground simulation. Airflow through the vehicle front air intake was measured via a series of pressure taps and the wind-tunnel velocity was adjusted to match the corresponding pressures found during the road tests. In order to cope with the inability to simulate ambient temperatures, the technique of Specific Dissipation (SD) was used (which has previously been shown to overcome this problem).
Technical Paper

Wind-Tunnel Modelling off Commercial Vehicle Drag-Reducing Devices: Three Case Studies

1987-01-20
870717
Road and wind-tunnel tests are presented which examine the drag coefficient reductions from aerodynamic devices fitted to three trucks. A modified SAE Type II procedure utilising an instrumented chase car, evaluated on-road, constant-speed drag reductions as a function of yaw angle. At 100 km/h, turbulence intensities of 1% - 4% were measured. The wind-tunnel results generally overestimated drag savings, particularly at high yaw angles. This was greater for cabin deflectors than for solid fairings. Simulating higher turbulence intensities gave improved agreement and it is argued that turbulence is a dominant modelling parameter.
Technical Paper

Wind Tunnel Balance

2017-11-07
2017-36-0237
This paper relates to the wind tunnel balance design that aims to meet the need for reliable but more affordable equipment that could accurately perform Aerodynamic measurements and act on three axes, being a Multitasking device, adaptable for prototypes of aircrafts, automobiles, buildings, sports products design, etc., through digital control that will measure the drag, lift and the aerodynamic pitch moment. The main task is stimulating creativity, to solve real problems and reduce technology dependence. The composite tubes used in the fixation of the "Sting-Compound" were chosen to avoid inaccurate measurements and have high flexural strength, even with a small cross section. That's feature is justified because the terminal velocity of wind tunnel is 50 m/s (97 knots), enabling to search many different model sizes and subsonic Reynolds speed regime.
X