Refine Your Search

Topic

Search Results

Technical Paper

Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine

2019-04-02
2019-01-1157
Reactivity Controlled Compression Ignition (RCCI) natural gas/diesel dual-fuel combustion has been shown to achieve high thermal efficiency with low NOX and PM emissions, but has traditionally been limited to low to medium loads. High BMEP operation typically requires high substitution rates (i.e., >90% NG), which can lead to high cylinder pressure, pressure rise rates, knock, and combustion loss. In previous studies, compression ratio was decreased to achieve higher load operation, but thermal efficiency was sacrificed. For this study, a multi-cylinder heavy-duty engine that has been modified for dual-fuel operation (diesel direct-injection and natural gas (NG) fumigated into the intake stream) was used to explore RCCI and other dual-fuel combustion modes at high compression ratio, while maintaining stock lug curve capability (i.e., extending dual-fuel operation to high loads where conventional diesel combustion traditionally had to be used).
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

1995-11-01
952610
Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

Synthetic Fuel Operation in a Heavy Duty Diesel Engine

1986-10-01
861538
A heavy duty (150 kW) diesel engine was tested to determine operational problems while running on minimally processed synthetic fuels. A reference No. 2 diesel fuel was compared with liquid products derived from shale, tar sands, and coal. Information on the engine setup and test procedure is presented. The test results include engine power, thermal efficiency, ignition delay, gaseous and particulate emissions, smoke opacity, cylinder pressure, and heat release data. Cold start data at 0°C and −20° C and idle deposit test results are also presented. These data should help to determine future engine modifications to enhance synfuel engine performance.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Roadmap for Hybridization of Military Tactical Vehicles: How Can We Get There?

2002-11-18
2002-01-3048
The U.S. Army's National Automotive Center has contracted with Illinois Institute of Technology Research Institute (IITRI), Southwest Research Institute (SwRI), and Advanced Propulsion, LLC, to evaluate the effects on fuel consumption and logistics that would result from hybridizing the powertrains of the Army's tactical wheeled vehicle fleet. This paper will outline the approach taken to perform that evaluation and present a synopsis of results achieved to date.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

2021-04-06
2021-01-0387
Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

2014-09-30
2014-01-2425
Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

Parasitic Loss Reduction for 21st Century Trucks

2000-12-04
2000-01-3423
To reach its objective of reducing vehicle fuel consumption by 50 percent, the development of the 21st Century Truck (21T) will address all the aspects of truck design contributing to the achievement of that goal. [1] This paper will address one of these aspects, specifically vehicle parasitic loss reduction with special emphasis on drive train losses, concentrating on the potential benefits of replacing mechanical coolant (water) and oil pumps with electrically powered pumps.
Technical Paper

Optimum Control of a Hydrostatic Powertrain in the Presence of Accessory Loads

2002-03-19
2002-01-1417
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Methods of Improving Combustion Efficiency in a High-Efficiency, Lean Burn Dual-Fuel Heavy-Duty Engine

2019-01-15
2019-01-0032
Combustion losses are one of the largest areas on inefficiency in natural gas/diesel dual-fuel engines, especially when compared to the traditional diesel engines on which they are based. These losses can vary from 1-2% at high load, to more than 6% of the total fuel energy at part load conditions. For diesel/natural gas dual-fuel engines, the three main sources of combustion losses are: bulk losses (increasing air-fuel ratio, AFR, to the premixed fuel’s lean flammability limit), crevice losses (premixed fuel trapped near valve pockets and top ring lands unable to oxidize), and blow-through losses (fumigated fuel/air intake charge passes through the cylinder and out the exhaust valve during valve overlap). In order to improve overall engine efficiency and decrease greenhouse gas emissions, these losses must be minimized.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Technical Paper

Manual Transmission Efficiency Trends and Characteristics

1994-11-01
942274
This paper presents a discussion on manual transmission torque losses and focuses specifically on the relationship between torque loss, input speed and torque. It also includes a discussion on other factors affecting torque loss, such as inclination angle and lube oil temperature. Manual transmissions used in compact light truck applications have torque losses that are a function of input speed and torque. Efficiency studies done on manual transmissions in the engine-driving mode indicate that torque losses, in other than direct-drive gears, are considerably more dependent on input torque than input speed. It was also observed that efficiency was significantly affected by the inclination angle and lube oil temperature.
Technical Paper

Low Cost Bharat Stage 3 and 4 Heavy Duty Diesel Technology

2011-01-19
2011-26-0078
This paper reviews the technologies available for Bharat Stage 3 and 4 Heavy Duty on-highway emissions standards. Benchmarking data from several existing engines is used to explore the trade-offs between engine/vehicle cost and fuel consumption. Other implications of the available technologies, such as durability / reliability requirements, are also addressed. The paper provides recommendations for low cost approaches to meeting Bharat Stage 3 and 4 standards with good fuel consumption and reliability/ durability characteristics. A brief look ahead to future Bharat Stage 5 requirements is also provided.
Technical Paper

Locomotive Emissions Measurements for Various Blends of Biodiesel Fuel

2013-09-08
2013-24-0106
The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. Systematic, credible, and carefully designed and executed locomotive fuel effect studies produce statistically significant conclusions are very scarce, and only cover a very limited number of locomotive models. Most locomotive biodiesel work has been limited to cursory demonstration programs. Of primary concern to railroads and regulators is understanding any exhaust emission associated with biodiesel use, especially NOX emissions. In this study, emissions tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1+ GE Dash9-44CW with two baseline fuels, conventional EPA ASTM No. 2-D S15 (commonly referred to as ultra-low sulfur diesel - ULSD) certification diesel fuel, and commercially available California Air Resource Board (CARB) ULSD fuel.
Technical Paper

Investigation of Gasoline Compression Ignition in a Heavy-Duty Diesel Engine Using Computational Fluid Dynamics

2021-04-06
2021-01-0493
A computational fluid dynamics (CFD) model was developed to explore gasoline compression ignition (GCI) combustion. Results were validated with single-cylinder engine (SCE) experiments. It was shown that the CFD model captured experimental results well. Cylinder pressure, heat release and emissions from the CFD model were also used to analyze the performance of GCI combustion with a current heavy-duty diesel engine platform. This work also provides detailed analysis on in-cylinder combustion and emissions using CFD. It was found that multiple injection strategy can deliver desirable fuel stratification profile that benefits both engine and emissions performance. A wave contoured piston was compared with a stepped-lip type piston for both GCI and Diesel combustion scenarios on the same engine platform. Stepped-lip pistons offer an opportunity to use multiple injection strategies to overcome high UHC emissions of GCI combustion when compared to wave pistons.
X