Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Performance Characterization of a Thermal Regeneration Unit for Exhaust Emissions Controls Systems

Diesel Particulate Filters have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. As soot accumulates on the filter, backpressure increases, and eventually exhaust temperatures are elevated to burn off the soot, actively or passively. Unfortunately, in many real-world instances, some duty cycles never achieve necessary temperatures, and the ability of the engine and/or catalyst to elevate exhaust temperatures can be problematic, resulting in overloaded filters that have become clogged, necessitating service attention. An autonomous heat source is developed to eliminate such risks, applying an ignition-based combustor that leverages the current diesel fuel supply, providing necessary temperatures when needed, regardless of engine operating conditions.
Technical Paper

Evaluation Techniques to Assess Exhaust Aftertreatment Support Mat Robustness

In order to scientifically approach the design of mounting systems for substrates in emissions control systems, it is essential to characterize the behavior of the involved materials, particularly the support mat. Manufacturing processes and various in-field conditions impact the long term performance of the support mat, and life-long emissions performance is critically dependent on its ability to retain the substrate throughout the intended life. Therefore, to ensure product robustness, the behavior during operation of all available support mats must be appropriately characterized to determine the technical layout in specific applications. This paper addresses three common characterization tests, developed internally and externally. Additionally, equipment improvements to minimize artifacts in test results as well as the development of a new mat test for manufacturing methods are addressed.