Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Underride in Fatal Rear-End Truck Crashes

For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
Journal Article

Safety Performance and Benefits of Heavy Truck Stability Control: Providing Insight into Compliance Evaluation

This paper contains an analysis of the potential safety benefits of electronic stability control (ESC) for single unit trucks and tractor semitrailers within the U.S. operating environment. It is based on research projects [1,2] which combined hardware-in-the-loop simulation and vehicle testing with the analysis of independent crash datasets using engineering and statistical techniques to estimate the probable safety benefits of stability control technologies for 5-axle tractor-semitrailer vehicles and single unit trucks. The characteristics of ESC-relevant crashes involving these two vehicle classes were found to be very different as were the control strategies needed for crash avoidance. Rollover was the dominant ESC relevant crash type for tractor semitrailers while loss of control was the dominant ESC relevant crash for straight trucks.

Rollover of Heavy Commercial Vehicles

Rollover accidents are of special concern for commercial vehicle safety. The relatively low roll stability of the commercial truck promotes rollover and contributes to the number of truck accidents and injuries. This Research Report takes an in-depth look at the mechanics and contributing factors to rollover accidents and helps to identify prevention strategies.
Technical Paper

Real-World Safety Effect of Roll Stability Control

Heavy truck rollover remains a primary factor in truck driver fatalities and injury. Roll stability control (RSC) and electronic stability control (ESC) are technologies that have been introduced to reduce the incidence of rollover in heavy truck crashes. This report provides an analysis of the real-world experience of a large for-hire company that introduced RSC into its fleet starting in 2004. The carrier provided a well-documented set of data on the operations of its truck-tractors, including both those equipped with RSC and those that did not have RSC installed. The purpose of the analysis is to determine the effect of RSC on the probability of rollover, as well as to identify other factors that either contribute to rollover or help reduce its incidence. This study presents results on the incidence of rollover both in terms of rollovers per 100 million miles traveled and the percentage of crashes that resulted in rollover.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Effectiveness of a Current Commercial Vehicle Forward Collision Avoidance and Mitigation Systems

This paper focuses on the safety performance of Commercial Vehicle Forward Collision Avoidance and Mitigation Systems (F-CAM) that include Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The study estimated the safety benefits of a commercially available F-CAM system considered to be representative of products currently in service. The functional characteristics were evaluated and its performance generically modeled to estimate safety benefits. This was accomplished through the following steps: (1) first characterize the actual performance of these systems in various pre-crash scenarios under controlled test track conditions, and then reverse engineering the algorithms that control warnings and automatic braking actions; (2) developing a comprehensive set of simulated crash events representative of actual truck striking rear-end crashes.
Technical Paper

Automated Control and Brake Strategies for Future Crash Avoidance Systems - Potential Benefits

This paper explores the potential safety performance of “Future Generation” automated speed control crash avoidance systems for Commercial Vehicles. The technologies discussed in this paper include Adaptive Cruise Control (ACC), second and third generation Forward Collision Avoidance and Mitigation Systems (F-CAM) comprised of Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The research [1[ discussed in this paper is from a study conducted by UMTRI which estimated the safety benefits of current and future F-CAM systems and the comparative efficacy of adaptive cruise control. The future generation systems which are the focus of this paper were evaluated at two separate levels of product refinement, “second generation” and “third generation” systems.