Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Journal Article

Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines

2018-04-03
2018-01-1429
When considered along with Phase 2 Greenhouse Gas (GHG) requirements, the proposed Air Resource Board (ARB) nitrogen oxide (NOx) emission limit of 0.02 g/bhp-hr will be very challenging to achieve as the trade-off between fuel consumption and NOx emissions is not favorable. To meet any future ultra-low NOx emission regulation, the NOx conversion efficiency during the cold start of the emission test cycles needs to be improved. In such a scenario, apart from changes in aftertreatment layout and formulation, additional heating measures will be required. In this article, a physics-based model for an advanced aftertreatment system comprising of a diesel oxidation catalyst (DOC), an SCR-catalyzed diesel particulate filter (SDPF), a stand-alone selective catalytic reduction (SCR), and an ammonia slip catalyst (ASC) was calibrated against experimental data.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Start of Injection and Spark Timing Effects

2015-09-29
2015-01-2813
The increased availability of natural gas (NG) in the United States (US), and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim is to realize fuel cost savings and reduce harmful emissions, while maintaining durability. This is a potential path to help the US reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe; however, this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Technical Paper

Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines

2015-04-14
2015-01-0849
Substitution of diesel fuel with natural gas in heavy-duty diesel engines offers significant advantages in terms of operating cost, as well as NOx, PM emissions and greenhouse gas emissions. However, the challenges of high THC and CO emissions, combustion stability, exhaust temperatures and pressure rise rates limit the substitution levels across the engine operating map and necessitate an optimized combustion strategy. Reactivity controlled compression ignition (RCCI) combustion has shown promise in regard to improving combustion efficiency at low and medium loads and simultaneously reducing NOx emissions at higher loads. RCCI combustion exploits the difference in reactivity between two fuels by introducing a less reactive fuel, such as natural gas, along with air during the intake stroke and igniting the air-CNG mixture by injecting a higher reactivity fuel, such as diesel, later in the compression stroke.
Journal Article

Evaluation of System Configurations for Downsizing a Heavy-Duty Diesel Engine for Non-Road Applications

2016-09-27
2016-01-8058
In recent years there has been a successful application of engine downsizing in the passenger car market, using boosting technologies to achieve higher specific power and improve fuel economy. Downsizing has also been applied in heavy-duty diesel engines for the on-highway market to improve fuel economy, motivated in part by CO2 emission limits in place under Phase 1 greenhouse gas (GHG) legislation. In the non-road market, with Tier 4 emission standards already being met and no current plan for a GHG emission requirement, there has been less activity in engine downsizing and the drivers for this approach may be different from their on-highway counterparts. For instance, manufacturers may consider emission regulation break points as a motivation for engine displacement targets. Many non-road applications demand a relatively high low-end torque and support the use of higher displacement engines.
Technical Paper

Evaluation of Longitudinal ADAS Functions for Fuel Economy Improvement of Class 8 Long Haul Trucks

2023-04-11
2023-01-0217
Fuel economy improvement of Class 8 long-haul trucks has been a constant topic of discussion in the commercial vehicle industry due to the significant potential it offers in reducing GHG emissions and operational costs. Among the different vehicle categories in on-road transportation, Class 8 long-haul trucks are a significant contributor to overall GHG emissions. Furthermore, with the upcoming 2027 GHG emission and low-NOx regulations, advanced powertrain technologies will be needed to meet these stringent standards. Connectivity-based powertrain optimization is one such technology that many fleets are adopting to achieve significant fuel savings at a relatively lower technology cost. With advancements in vehicle connectivity technologies for onboard computing and sensing, the full potential of connected vehicles in reducing fuel consumption can be realized through V2X (Vehicle-to-Everything) communication.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0720
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Evaluation of 48V Technologies to Meet Future CO2 and Low NOx Emission Regulations for Medium Heavy-Duty Diesel Engines

2022-03-29
2022-01-0555
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have recently announced rulemakings focused on tighter emission limits for oxides of nitrogen (NOx) from heavy-duty trucks. As part of the new rulemaking CARB has proposed a Low Load Cycle (LLC) to specifically evaluate NOx emission performance over real-world urban and vocational operation typically characterized by low engine loads, thereby demanding the implementation of continuous active thermal management of the engine and aftertreatment system. This significant drop in NOx levels along with continued reduction in the Green House Gas (GHG) limits poses a more significant challenge for the engine developer as the conventional emission reduction approaches for one species will likely result in an undesirable increase in the other species.
X