Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Heavy Duty Diesel Engine Emission Control to Meet BS VI Regulations

2017-01-10
2017-26-0125
The next generation advanced emission regulations have been proposed for the Indian heavy duty automotive industry for implementation from 2020. These BS VI emission regulations will require both advanced NOx control as well as advanced PM (Particulate Matter) control along with Particle Number limitations. This will require implementation of full DPF (Diesel Particulate Filter) and simultaneous NOx control using SCR technologies. DPF technologies have already been successfully implemented in Euro VI and US 10 HDD systems. These systems use low temperature NO2 based passive DPF regeneration as well as high temperature oxygen based active DPF regeneration. Effective DPF and DOC designs are essential to enable successful DPF regeneration (minimize soot loading in the DPF) while operating HDD vehicles under transient conditions. DOC designs are optimized to oxidize engine out NO into NO2, which helps with passive DPF regeneration.
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Journal Article

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

2011-04-12
2011-01-1312
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
Journal Article

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2015-04-14
2015-01-0992
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, while discussions are in progress for tightening NOx emissions from HD engines post 2020. This will require increasingly higher NOx conversions across the emission control system and will challenge the current aftertreatment designs. Typical 2010/2013 Heavy Duty systems include a diesel oxidation catalyst (DOC) along with a catalyzed diesel particulate filter (CDPF) in addition to the SCR sub-assembly. For future aftertreatment designs, advanced technologies such as cold start concept (dCSC™) catalyst, SCR coated on filter (SCRF® hereafter referred to as SCR-DPF) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversions, in combination with improved control strategies.
Technical Paper

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2014-04-01
2014-01-1525
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, which will require increasingly higher NOx conversion to meet emission regulations. For future aftertreatment designs, advanced technologies such as SCR coated on filter (SCRF®) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversion. In this work, different options were evaluated for achieving high NOx conversion. First, high performance NOx control catalysts were designed by using SCRF unit followed by additional SCR on high porosity substrates. Second, different control strategies were evaluated to understand the effect of reductant dosing strategy and thermal management on NOx conversion. Tests were carried out on a HD engine under transient test cycles.
Technical Paper

Demonstration of SCR on a Diesel Particulate Filter System on a Heavy Duty Application

2015-04-14
2015-01-1033
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2013 Heavy Duty Diesel emission control systems include a DOC upstream of a catalyzed soot filter (CSF) which is followed by urea injection and the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, which would enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCRF® technology, hereafter referred to as SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging.
X