Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Waste Heat Recovery on a Diesel-Electric Hybrid Bus Using a Turbogenerator

2012-09-24
2012-01-1945
An increase in global oil consumption, coupled with a peak in oil production, has seen the price of fuel escalate in recent years, and consequently the transport sector must take measures to reduce fuel consumption in vehicles. Similarly, ever-tightening emissions legislation is forcing automotive manufacturers to invest in technology to reduce toxic emissions. In response to these concerns, this project aims to address one of the fundamental issues with the Internal Combustion Engine - approximately one third of the fuel energy supplied to the engine is lost as heat through the exhaust system. The specific aim of this project is to reduce the fuel consumption of a diesel-electric hybrid bus by recovering some of this waste heat and converting it to useful power. This report details how turbocompounding can be applied to the engine, via the inclusion of a turbogenerator, and assesses its waste heat recovery performance.
Technical Paper

Review of Rankine Cycle Systems Components for Hybrid Engines Waste Heat Recovery

2012-09-24
2012-01-1942
In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy. The Rankine Cycle system has been raising interest for its aptitude to produce systems capable of capturing part of this waste heat and regenerate it as electrical or mechanical power. By integrating these systems into existing hybrid engine environments, it has been proved that Rankine Cycle system, which is more than 150 years old, can play a major role in reducing fuel consumption. The use of such a system for waste heat recovery on a hybrid engine represents a promising compromise in transforming the thermal energy into electricity and feeding this electricity back to the vehicle drivetrain by using the in situ electrical motor system or storing it into batteries.
Technical Paper

Modelling and Control of a Hybrid Urban Bus

2019-04-02
2019-01-0354
This paper describes the development and on-vehicle validation testing of next generation parallel hybrid electric powertrain technology for use in urban buses. A forward-facing MATLAB/Simulink powertrain model was used to develop a rule-based deterministic control system for a post-transmission parallel hybrid urban bus. The control strategy targeted areas where conventional powertrains are typically less efficient, focused on improving fuel economy and emissions without boosting vehicle performance. Stored electrical energy is deployed to assist the IC engine system leading to an overall reduction in fuel consumption while maintaining vehicle performance at a level comparable with baseline conventional IC engine operation.
Technical Paper

A Simple But Effective Catalyst Model for Two-Stroke Engines

1992-09-01
921693
A mathematical model has been developed which predicts the tailpipe exhaust emissions of two-stroke cycle engines utilising an oxidising catalytic converter. This model is currently one-dimensional and has been developed as an aid to the design of engine/exhaust systems. The experimental rig employed has a two-fold function, its primary task was to aid in the validation of the model. Secondary to this it was used to simulate the gaseous properties of the exhaust gas at various positions in the exhaust system. The validation exercise is currently proceeding utilising metallic substrate technology with preliminary results indicating that the model is showing good correlation to measured values.
X