Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation of Stresses and Deflection in Multi Stage Leaf Spring of Heavy Duty Vehicle by FEM and Its Experimental Verification

2015-01-14
2015-26-0184
In commercial vehicle, Leaf Spring design is an important milestone during product design and development. Leaf springs are the most popular designs having multiple leaves in contact with each other and show hysteresis behavior when loaded and unloaded. Commonly used methods for evaluation of leaf spring strength like endurance trials on field and Rig testing are time consuming and costly. On the other hand, virtual testing methods for strength and stiffness evaluation give useful information early in the design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate any design change early in development cycle. A study has been done in Volvo-Eicher to correlate Rig result with Finite Element Analysis (FEA) simulation result of Multi-stage Suspension Leaf Spring, entirely through Finite Element Analysis route.
Technical Paper

Investigation of Stresses and Deflection in Multi Stage Leaf Spring of Heavy Duty Vehicle by FEM and Its Experimental Verification

2015-04-14
2015-01-1345
In commercial vehicle, Leaf Spring design is an important milestone during product design and development. Leaf springs are the most popular designs having multiple leaves in contact with each other and show hysteresis behavior when loaded and unloaded. Commonly used methods for evaluation of leaf spring strength like endurance trials on field and Rig testing are time consuming and costly. On the other hand, virtual testing methods for strength and stiffness evaluation give useful information early in the design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate any design change early in development cycle. A study has been done in Volvo-Eicher to correlate Rig result with Finite Element Analysis (FEA) simulation result of Multi-stage Suspension Leaf Spring, entirely through Finite Element Analysis route.
Technical Paper

Finite Element Simulation and Validation of Fully Suspended Heavy Duty Commercial Vehicle (HCV) as per AIS029 Pendulum Impact Test

2015-09-29
2015-01-2873
The safety of the heavy duty commercial vehicle (HCV) occupants in an accident is an imperative task and should be considered during the design and development of cabins. The sufficient cabin survival space must be remained after the accident. The main aim of this study is to develop a Finite Element (FE) model of HCV cabin and validate to the test as per AIS029. The present study also includes the assessment of the energy absorption capabilities of the HCV cab during the pendulum impact test. Initially a detailed 3D FE model of a fully suspended HCV cabin was developed and then pendulum impact test simulation was carried out using LS-Dyna explicit solver. Simulation results were compared with the test results and were found in a great agreement in terms of survival space and overall deformation behavior. The load transfer path was described at the time of pendulum impact. The largest amount of impact energy was absorbed by the frontal region of the cabin.
Technical Paper

Finite Element Analysis and Validation of Bus Seat Structure as per AIS023: Safety Features Evaluation of Bus Seat using Hybrid III Dummy

2015-09-29
2015-01-2869
Buses are always one of the main and favorite sources of public transit. Thousands of people die or injure every year in bus accidents. Bus seat can also cause severe injury to the occupants in case of frontal impact. Seat structure of the bus should absorb sufficient energy to minimize the passenger injury. Most of the occupants seated in the second row or further back were injured by hitting the seat back in the row in front of them. In India, AIS023 (Automotive Industry Standards) is one of the several mandatory standards from CMVR (Central Motor Vehicles Rules) to ensure the seat strength and occupant safety during accidents. This standard specifies minimum and maximum deformations range for the seat back to minimize the passenger injury with adequate seat strength. Present study includes the Finite Element Analysis (FEA) and correlation of bus seat as per AIS023 test setup with LS-Dyna explicit tool. Reasonable correlation was found between test and simulation results.
Technical Paper

Development of Methodology for Full Bus Body Optimisation and Strengthening by Numerical Simulation

2017-03-28
2017-01-1341
Public conveyance such as a bus is a major contributor to socio - economic development of any geography. The international market for passenger bus needed to be made viable in terms of passenger comfort, minimum operational costs of the fleet by reduced fuel consumption through light weighting and yet robust enough to meet stringent safety requirements. Optimized design of bus body superstructure plays vital role in overall performance and safety, which necessitates to evaluate bus structure accurately during initial phase of design. This paper presents a robust methodology in numerical simulation for enhancing the structural characteristics of a bus body with simultaneous reduction in the weight by multi-material optimization while supplemented with sensitivity and robustness analysis. This approach ensures significant reduction in vehicle curb weight with promising design stiffness.
X