Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improved NOx Reduction Using Wiremesh Thermolysis Mixer in Urea SCR System

A compact, knitted, crimped wiremesh mixer disposed in the exhaust system of an internal combustion engine, between the reductant injection and the urea SCR unit, increases the uniformity of the reductant in the exhaust stream by the time the stream reaches the SCR catalysis unit. Wiremesh mixer enhances thermolysis of urea into ammonia and iso-cyanic acid (HNCO). Computational Fluid Dynamics (CFD) modeling shows improved uniformity index from 0.94 to 0.99 within 35 mm travel length due to longitudinal and radial flow of the exhaust gas through the body of the wiremesh mixer. The higher thermolysis and rapid warm-up nature of the wiremesh provides enhanced ammonia production from urea thermolysis. Wiremesh physical attributes such as material composition, geometry and structure, wire diameter, mesh crimp pitch, crimp depth, crimp angle and the contour are optimized for minimum back pressure and maximum mixing efficiency.
Technical Paper

Edge Seal Mounting Support for Diesel Particulate Filter

Due to the large size, high bulk density and high thermal expansion coefficient of the diesel particulate filter substrate; the conventional mounting system cannot provide the necessary radial mounting pressure. Mathematical and experimental results give the vibration and the back pressure force needed to mount the diesel particulate filter in the exhaust system. L-seal mounting support used in diesel particulate filter provides cushion to accommodate the linear tolerance of the substrate and the cone and also the necessary axial and radial mounting forces. L-seal axial and radial mounting forces are altered by type of material, surface characteristics, heat treatment and wire geometry. The proportional increase in compression force per unit weight during cycling shows dimensional consistency of the L-seal. The compression characteristics of A286 tremendously increase (>20%) during heat treatment as precipitation and hardening occurs.