Refine Your Search

Topic

Search Results

Standard

Truck Ability Prediction Procedure

1997-02-01
CURRENT
J688_199702
The procedure has been developed to provide a practical method for the prediction of truck performance using accepted data. It Is designed to help anyone concerned with the problem of truck selection. By following directions, it is possible to determine the necessary information for intelligent truck selection without being concerned with the origin or derivation of the complex factors involved. With readily available specification of a truck, information provided in the tables, and minimum of calculation, it is possible to predict: (a) The performance obtainable from a truck of given characteristics under given operating conditions. (b) The characteristics required in a truck to meet different performance requirements under given operating conditions. This report comprises a procedure form and 10 tables of data.
Standard

Truck Ability Prediction Procedure

1963-06-01
HISTORICAL
J688_196306
The procedure has been developed to provide a practical method for the prediction of truck performance using accepted data. It Is designed to help anyone concerned with the problem of truck selection. By following directions, it is possible to determine the necessary information for intelligent truck selection without being concerned with the origin or derivation of the complex factors involved. With readily available specification of a truck, information provided in the tables, and minimum of calculation, it is possible to predict: (a) The performance obtainable from a truck of given characteristics under given operating conditions. (b) The characteristics required in a truck to meet different performance requirements under given operating conditions. This report comprises a procedure form and 10 tables of data.
Standard

Truck Ability Prediction Procedure

1987-08-01
HISTORICAL
J688_198708
The procedure has been developed to provide a practical method for the prediction of truck performance using accepted data. It Is designed to help anyone concerned with the problem of truck selection. By following directions, it is possible to determine the necessary information for intelligent truck selection without being concerned with the origin or derivation of the complex factors involved. With readily available specification of a truck, information provided in the tables, and minimum of calculation, it is possible to predict: (a) The performance obtainable from a truck of given characteristics under given operating conditions. (b) The characteristics required in a truck to meet different performance requirements under given operating conditions. This report comprises a procedure form and 10 tables of data.
Standard

Torque Ratings for Power Take-off Mounting Pads

2003-07-25
HISTORICAL
J2662_200307
This SAE Recommended Practice is intended to serve as a reference for the amount of torque that a Power Take-Off can induce on the transmission mounting pad. This document will apply to six-bolt, eight-bolt, and rear mounted power take-offs.
Standard

Torque Ratings for Power Take-off Mounting Pads

2017-09-19
CURRENT
J2662_201709
This SAE Recommended Practice is intended to serve as a reference for the amount of torque that a Power Take-Off can induce on the transmission mounting pad. This document will apply to six-bolt, eight-bolt, and rear mounted power take-offs.
Standard

Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles

2018-02-15
CURRENT
J1667_201802
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
Standard

SNAP-ACCELERATION SMOKE TEST PROCEDURE FOR HEAVY-DUTY DIESEL POWERED VEHICLES

1996-02-01
HISTORICAL
J1667_199602
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
Standard

SAE Nodal Mount

2017-08-14
CURRENT
J1134_201708
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

SAE Nodal Mount

2000-04-26
HISTORICAL
J1134_200004
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2002-03-13
HISTORICAL
J2406_200203
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2018-02-12
CURRENT
J2406_201802
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

2018-07-23
CURRENT
J2711_201807
This SAE Recommended Practice was established to provide an accurate, uniform and reproducible procedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester.
Standard

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

2002-09-20
HISTORICAL
J2711_200209
This SAE Recommended Practice was established to provide an accurate, uniform and reproducible procedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester.
Standard

Rating of Winches

1984-06-01
HISTORICAL
J706_198406
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for Òfree-spoolingÓ may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control Òfree-spooling,Ó but will not be relied on to control or hold a load.
Standard

Rating of Winches

1985-07-01
HISTORICAL
J706_198507
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for Òfree-spoolingÓ may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control Òfree-spooling,Ó but will not be relied on to control or hold a load.
Standard

Pilot Bearings for Truck and Bus Applications

2001-06-12
HISTORICAL
J1731_200106
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
Standard

Pilot Bearings for Truck and Bus Applications

2017-08-14
CURRENT
J1731_201708
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
Standard

Openings for Six- and Eight-Bolt Truck Transmission Mounted Power Take-Offs

1978-04-01
HISTORICAL
J704B_197804
The accompanying mounting and gear locations are applicable for all general installations of power take-off on the transmission gear box of motor trucks and tractors where the size of the transmission permits. The heavy-duty type opening can be adapted to the regular-duty type by the use of an adapter with 6.35 mm (0.25 in) flange thickness with appropriate bolt pattern and thread engagement. (See Figures 1 and 2.)
X