Refine Your Search




Search Results

Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Yaw Dynamics of Command Steered Multi Axle Semitrailer

This paper investigates the yaw dynamic behaviour of a seven axle tractor semitrailer combination vehicle developed by VRDE (Vehicle Research & Development). The semitrailer has four steerable axles which follow command steering law i.e. all axles of semitrailer are steered in a particular relation with articulation of tractor. A 4 dof (degree of freedom) linear yaw plane model was developed for this combination vehicle. Yaw response characteristics such as lateral acceleration, yaw rate and articulation angle for step and sine steer is obtained from this model. Effects of speed on the above parameters are also studied to the same steering inputs. Lateral tyre forces due to semitrailer steering at various speeds are estimated to understand its distribution on each axle. Steady state yaw rate and articulation angle gain are obtained to predict the understeer / oversteer behaviour of combination vehicle.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
SAE MOBILUS Subscription

Wiley SAE MOBILUS® eBook Package

Committed to being the primary source for aerospace and ground vehicle engineering resources, SAE International has added the full compilation of our Wiley eBook collections to the SAE MOBILUS® technical resource platform. Purchasable as an annual subscription and containing the titles from the Wiley Aerospace Collection, the Wiley Automotive Collection, the Wiley Computer Systems Collection, and the Wiley Cyber Security Collection.
SAE MOBILUS Subscription

Wiley Automotive Collection

Purchasable as an annual subscription, the Wiley Automotive Collection contains 20 eBook titles and focuses on a wide range of categories, including engines, transmission, chassis, body, electrical, safety, and manufacturing. Titles covering new and emerging topics such as battery technology and electric and hybrid vehicles are included as well, making the series an essential addition to any institution’s automotive resources.
Technical Paper

Which Spring? Where?

In selecting springs for commercial vehicles, it is essential to consider the fundamental principles of the suspension system as a whole, as well as the specific spring characteristics. This paper discusses the applications of these principles; also, it compares the many types of springs available, including single leaf, multileaf, and two-stage leaf springs, and coil, rubber, and pneumatic springs. Among the considerations stressed are: the relationships of spring static deflections to vehicle pitch frequency and oscillation center location, the questionability of two-stage leaf springs, the disadvantages of single tapered leaf versus multi-leaf springs, the advantages of coil springs in low weight and variable rate, and why pneumatic springs are ideal for large load range, heavy commercial vehicles.
Technical Paper

Wheel Motors for Hydrostatic Mobile Equipment

The wheel motor is a combination of hydro-motor and planetary transmission. Industrial, agricultural, construction and various types of public utility vehicles, which due to their design cannot use axle drives, make increasing use of the individual wheel drive. Speed, torque transmission, wheel bearings, valves for hydraulic operation and hydraulic engagement/disengagement are some of the requirements for wheel motor drives.

Wheel End Assembly and Axle Spindle Interface Dimensions--Truck and Bus

This SAE Recommended Practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include bearing cones, bearing spacers, and wheel hubs. This document is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, R, N, and P. SAE configurations FC, FL, K, L, U, and W are not included, but may be added in the future. The purpose of this document is to establish dimensional guidelines to promote a functional standardization of spindle dimensions wheel end assemblies. Proper hub component dimensions can then be established.
Technical Paper

Wet Clutch Energy Calculation

Formulas are derived to show that moving elements of a drive train can contribute to the energy seen by the clutch plates. Oscillograph traces, sample calculations and photographs of failed plates show actual energy at failure of test plates. The formula is presented for calculating instantaneous energy when coefficient of friction, apply pressure and slip speed are known or can be estimated.
Technical Paper

Vision Assisted Tractor Guidance for Agricultural Vehicles

Computer algorithms were developed for generating the guidance parameters necessary to steer an agricultural tractor. A variety of field operations were considered in order that the guidance program be suited for general applications including travel in curved rows and following a single edge. Testing of the guidance algorithm was performed in the laboratory using simulated and videotaped images of rowcrops and tilled soil. From the images, yaw angle change of the tractor, direction value and offset error were computed. Prediction of the direction value and offset error compared well to measured values. Accuracy of the direction value was within +/- 0.5 degrees while the offset error was within +/- 0.05 meters. Good performance was observed for straight and curved rows as well as following a single edge.
Technical Paper

Vertical Load Impact of an Urban Front Engine Bus on the Pavement

The main objective of this paper is to present the different methods of pavement dimensioning, applied on the Brazilian roads, in order to compare the loads used in the calculation with a real application. It has been used a 4×2 vehicle with the maximum load distribution allowed in Brazil (6 tons in the front axle / 10 tons in the rear axle). It has been instrumented the rear axle with strain gauges to simulate it as a load cell. Measurements were done on a real urban application (Curitiba city - Brazil). Results showed significant differences between the load used in the Brazilian pavement dimensioning methodology and the dynamic vertical load, which could have a direct impact on the pavement lifetime. This paper was supported by three different agency / companies: UNICAMP, Volvo do Brasil and Meritor do Brasil Sistemas Automotivos Ltda.
Technical Paper

Verification of Heavy Truck EBS and ABS Using MatrixX Hardware in the Loop Tools

The development of advanced ABS, EBS, and vehicle dynamics control systems requires significant resources and testing. Even in the most controlled environment, on-track vehicle tests are not repeatable. A heavy vehicle model combined with pneumatic brake hardware connected to actual brake system controllers creates a powerful engineering tool. This tool is useful for control system development, electro-mechanical actuator development, and brake system development. An existing heavy vehicle model is modified to interact with the realtime simulation hardware and the pneumatic brake system hardware. Data from several hardware in the loop simulations are presented.
Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Journal Article

Vehicle System Simulator: Development and Validation

A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Technical Paper

Vehicle Stability and Control Research for U.S. Comprehensive Truck Size and Weight (TS&W) Study

The U.S. Department of Transportation's Comprehensive TS&W Study addressed the safety impacts of potential changes to TS&W limits from two perspectives: (1) the assessment of crash information and exposure data (vehicle miles traveled), and (2) the evaluation of stability and control performance of several truck configurations in terms of static roll stability, rearward amplification, and load transfer ratio. This paper addresses the analytical approach used to evaluate safety impacts from the latter perspective. The vehicle performance measures were estimated using simulation models. Several vehicle parameters were varied in a large parametric analysis for use in the study.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Technical Paper

Vehicle Interconnected Suspension System based on Hydraulic Electromagnetic Energy Harvest: Design, Modeling and Simulation Tests

To integrate the energy-recovery characteristic of the Hydraulic electromagnetic shock absorber (HESA) and the anti-roll characteristic and anti-pitch characteristic of Hydraulic Interconnected Suspension(HIS), a Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS) is presented. HESA-HIS has three operating modes: energy-recovery priority mode, dynamic performance priority mode and energy-recovery and dynamic performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, a full vehicle model is built by using the software AMESim, and some simulation tests are conducted by using the vehicle model. The simulation results show that the system can effectively reduce the roll angle of the vehicle, while maintaining good ride performance. Fishhook test results show that the roll angle of the HESA-HIS vehicle is reduced by 80%, compared to the traditional vehicle.
Technical Paper

Vehicle Integration, Gear Material and Heat Treatment Effects on Rear Axle Whining Noise

This paper will focus whining noise on rear axles applied in mid-size trucks. Vehicle integration changes during development affect directly the gear noise perception, in which it may be intensified. Also, gear material and heat treatment choices for the rear axle need to be done carefully, taking into consideration the integration changes and also the driver usage. A lessons learned collection over the diverse aspects of a rear axle whining noise will be the basis of this paper.
Technical Paper

Vehicle Handling Sensitivity Analysis through Numerical Simulation in Commercial Vehicles

Vehicle handling is an important attribute that is directly related to vehicle safety. The rapid development of road infrastructure has resulted in a greater focus on safety and stability. Commercial vehicle stability and safety assumes higher significance because of high center of gravity (CG) and heavier loads. A gamut of parameters influence vehicle handling directly and indirectly. However, it is quite difficult to gauge through physical testing, the extent of each parameter's influence on handling. Therefore, this paper examines vehicle handling by way of a sensitivity analysis through numerical simulation. A prototype vehicle is also instrumented and tested to confirm trends and validate the results of the simulation. An Intermediate Commercial Vehicle (ICV) with Gross Vehicle Weight (GVW) of around 13 tonnes is modeled and parameters like wheelbase and tyre stiffness are altered and the effect of these changes on handling parameters (yaw rate, lateral acceleration) is observed.
Technical Paper

Vehicle Gap Analysis Program

The Future Combat System Operational Requirements Document requires that manned and unmanned ground vehicles be capable of negotiating gaps 1.5- to 4.0-meters wide. Gaps include both natural and manmade obstacles. Overcoming battlespace gaps requires the ability to effectively conduct four tasks: prediction, definition, avoidance, and defeat. The inability to overcome gaps within the theater of operations will significantly impair the Future Force's responsiveness, agility, and sustainability. Researchers at the US Army Engineer Research and Development Center (ERDC), working in the field of vehicle mobility have developed methods to predict the physical interactions of vehicles with terrain mechanics. This physics-based simulation method uses research conducted at the ERDC to combine historical empirical laboratory and field evaluations with lumped parameter and numerical analysis to develop a simulated environment of the terrain.