Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“MBE 4000-A New Engine for the US Class 8 Truck Market”

2000-12-04
2000-01-3457
Due to ever soaring fuel costs and even more stringent emission regulations which require more elaborate technical efforts and unfortunately lead to a negative trend on fuel economy as well, todays and future trucking business is extremely challenged. These facts create an urgent requirement for the engine manufacturer to offer an engine with an optimized cost-benefit-ratio for the trucking business. Mercedes-Benz, as the leader in the European commercial vehicle market - of which e. g. high fuel costs, long maintenance intervals and high engine power-to-weight ratios have always been key characteristics - has developed a new class 8 engine for the US market. The MBE 4000 is a 6 cylinder inline engine in the compact size and low weight category, but due to its displacement of 12,8 liters it offers high performance characteristics like heavier big block engines.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

e-Sys Electric Axle: Electrification Solution for Commercial Vehicles

2023-07-25
2023-36-0350
With the increase in demand for energy sustainability projects over the last few years, the Brazilian commercial vehicle industry was guided to develop projects based on ESG policies. Aligned with this need, an initiative that ended up becoming a reality was the “e-Sys” electrification solution, by the company Suspensys. This solution includes a power source (battery), an e-powertrain (motors, inverters and drive axle) and an intelligent control system (VCU with embedded code and sensors). The main motivational drive was the hybridization of semi-trailers, in order to generate a reduction in fuel consumption in cargo transport in Brazil, in addition to the consequent reduction in the emission of particles into the environment and promoting the safety of the operation. It was also adopted, as a premise of the project, that the electrification system was totally independent of the truck’s electronic system (stand alone system), in order to facilitate the operation of the fleet owner.
Technical Paper

Zero Wear Analysis of an Injector Coupling

1990-10-01
902239
The coupling is an integral part of the Cummins CELECT electronically controlled injector. Excessive wear was observed on early designs of the coupling and coupling bore. The coupling wear was caused by a high stress concentration and excessive side loading of the coupling as it slid against the coupling bore. The zero wear theory was used to develop a coupling design where the maximum wear depth does not exceed half the peak to peak surface finish (zero wear) over the life of the engine. The side load exerted on the coupling was compared with the calculated contact pressure for zero wear. The undesirable effects of a square edge stress concentration are discussed in the zero wear model. The physical effects of the sharp edge and chamfered coupling edge are reported, but not analyzed in this paper. Three different coupling designs were investigated by applying the zero wear concept.
Technical Paper

ZF Retarder in Commercial Vehicles

1992-11-01
922452
This paper describes the ZF - Intarder, a wear-free vehicle brake for commercial vehicles. Qualities such as optimum weight saving, compactness, compatibility with all PTOs and no change in driveshaft length, are the results of a new development. Performance measurements demonstrate connection with engine cooling system. Field test measurements provide new information about frequency of use of various brake levels and electronic speed control. An evaluation of financial issues indicates advantages for operation.
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Yaw Stability Control of Tractor Semi-Trailers

2008-10-07
2008-01-2595
Tractor semi-trailer stability during emergency braking and steering maneuvers has been an issue that was improved through implementation of Anti-lock Braking Systems (ABS). Although some improvements have been achieved, the need for new control methodologies is evident from the number of accidents reported by NHTSA involving tractor semi-trailers. In this paper, a new control algorithm has been developed for improving the tractor semi-trailer stability through utilization of yaw moment, i.e., tire differential braking strategy. This new, multifaceted, adaptive control algorithm which allows the estimation of the unknown vehicle parameters through use of the adaptation laws is based on the Lyapunov Direct Method. A tractor semi-trailer model with four degrees of freedom was used to develop the control algorithm and the adaptation laws. The controller was implemented on a 2-axle tractor 1-axle van trailer in TruckSim 7©.
Technical Paper

Worldwide Truck Electronic Systems -- Trends for the 90s

1986-11-01
861970
It is the goal of this paper, to discuss the impact of electronics on modern day commercial vehicles an buses. Seen from the position of advanced engineering of an European commercial vehicle manufacturer, the emphasis will be placed on the mechanical-electronical system itself, rather than the electronics themselves. User friendly, logic protected systems will minimize operator unfamiliarity and misapplication and will offer not only component control, but shortly the integration of all of these subsystems in the total vehicle control. Total vehicle control will be the ultimate result, when the driver, the truck and the environment are brought together. Such vehicles will be more responsive, safer and easier to drive than today's commercial vehicles and buses and offer a cost effective utilization of these new technologies to the customer.
Technical Paper

Worldwide Safety and Environmental Regulations

1980-04-01
800664
United States construction equipment manufacturers are subject to a maze of product-oriented regulations in marketing their U.S.-built products in foreign countries. These same obstacles face their foreign-built products. In the past, these foreign regulations were more apt to be trade barriers to protect domestic markets than bonafide regulations to protect the users. These trade barriers are gradually being lifted because manufacturers in virtually all countries have now expanded beyond their domestic markets. Thus, the same manufacturers that formerly encouraged trade barriers must now cope with them. This expansion of markets now encourages the elimination of trade barriers and the harmonization of regulations. For the future, regulations will be retained and expanded. They will, however, be harmonized with international voluntary standards rather than having different regulations for each country.
Technical Paper

Worldwide Energy Situation-Impact on Commercial Vehicles

1979-02-01
790481
The world consumption rate of oil is increasing so fast that the supply will not keep pace. During 1977, the world energy consumption exceeded 265 quadrillion BTU s--the equivalent of over 130 million barrels of oil per day. By the year 2000, world energy consumption is expected to more than double. Some time between 1980 and the turn of the century, world oil production will stop growing and slowly begin to shrink. The inescapable conclusion is that petroleum will not be able to maintain its share of the rapidly growing demand for energy. Recognizing that there is a close relationship between energy consumption and the performance of national economies, especially in industrialized nations, other fuels will be needed to meet growth demands. The world must shift from a predominantly petroleum-based economy to one which will phase in other energy sources, with increased emphasis on coal and nuclear power. This transition will require some complex decisions.
Technical Paper

World Trucks - A European View

1989-08-01
891630
The idea of a world truck is a fascinating challenge - whereas cars are purchased more or less as seen; truck purchasers demand more individual configurations. In national and global terms, that means a highly complex truck market. Historically, a few European and North American manufacturers produced almost all the trucks for the world market. That changed through the 60's and 70's, with more local assembly plants around the world and increasing worldwide manufacturing capabilities. Concurrently, international component design standards have made some progress towards compatibility. Much greater co-operation is needed, however, before a genuinely international set of standards can be applied. As the task assigned to trucks is the same worldwide, namely to transport goods from A to B; it should be desirable and possible to work towards a greater commonality of vehicle - to ultimately achieve a world truck. The only unknown is the time scale.
Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Work Solenoids-Environmental and Design Considerations for Earthmoving Equipment Applications

1986-04-01
860760
Work solenoids are widely used in household appliances. The environment and design of this type application does not lead to solenoids for the earthmoving industry. This paper presents the environmental effects to be considered when designing a solenoid for the earthmoving industry. It further explains the need for, and type of, test necessary to validate the design. Finally a review of production quality procedures, necessary to insure reliable production parts is discussed.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2010-05-11
HISTORICAL
J1614_201005
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.8 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2012-09-13
HISTORICAL
J1614_201209
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2018-11-21
CURRENT
J1614_201811
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
X