Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

e-Sys Electric Axle: Electrification Solution for Commercial Vehicles

2023-07-25
2023-36-0350
With the increase in demand for energy sustainability projects over the last few years, the Brazilian commercial vehicle industry was guided to develop projects based on ESG policies. Aligned with this need, an initiative that ended up becoming a reality was the “e-Sys” electrification solution, by the company Suspensys. This solution includes a power source (battery), an e-powertrain (motors, inverters and drive axle) and an intelligent control system (VCU with embedded code and sensors). The main motivational drive was the hybridization of semi-trailers, in order to generate a reduction in fuel consumption in cargo transport in Brazil, in addition to the consequent reduction in the emission of particles into the environment and promoting the safety of the operation. It was also adopted, as a premise of the project, that the electrification system was totally independent of the truck’s electronic system (stand alone system), in order to facilitate the operation of the fleet owner.
Technical Paper

You're Not Out There Alone: High-Tech and Other Aids for Your Career Planning and Management

1988-09-01
881249
Career development planning is critical to getting the most out of one's working years. It should start when one starts a career, but even if you start in mid-career, it's not too late. For those who haven't done it, career planning may seem difficult and confusing. Increasingly, your community library and state employment service agency provides valuable help in the form of computerized and manual aids to career planning and job-getting. This article follows Dave Brown, a mid-career engineer, through the career-planning process, introduces library and government resources to you and provides a list of computer programs relating to career planning and job getting.
Technical Paper

Yield Monitors, Combines, and Their Interactions

1999-09-14
1999-01-2846
Instantaneous combine grain yield monitors need to provide reliable yield measurements since yield as a function of location is key information needed to manage fields by management zones. A scale and a yield monitor measured the same stream of grain and provided similar results when compared to each other. Data from either device may be misinterpreted if care in calibration and operation is not taken. Careful operators who pay attention to calibration, maintenance, and manufacturer's instructions will be required.
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Yaw Dynamics of Command Steered Multi Axle Semitrailer

2017-01-10
2017-26-0345
This paper investigates the yaw dynamic behaviour of a seven axle tractor semitrailer combination vehicle developed by VRDE (Vehicle Research & Development). The semitrailer has four steerable axles which follow command steering law i.e. all axles of semitrailer are steered in a particular relation with articulation of tractor. A 4 dof (degree of freedom) linear yaw plane model was developed for this combination vehicle. Yaw response characteristics such as lateral acceleration, yaw rate and articulation angle for step and sine steer is obtained from this model. Effects of speed on the above parameters are also studied to the same steering inputs. Lateral tyre forces due to semitrailer steering at various speeds are estimated to understand its distribution on each axle. Steady state yaw rate and articulation angle gain are obtained to predict the understeer / oversteer behaviour of combination vehicle.
Technical Paper

Worldwide Truck Electronic Systems -- Trends for the 90s

1986-11-01
861970
It is the goal of this paper, to discuss the impact of electronics on modern day commercial vehicles an buses. Seen from the position of advanced engineering of an European commercial vehicle manufacturer, the emphasis will be placed on the mechanical-electronical system itself, rather than the electronics themselves. User friendly, logic protected systems will minimize operator unfamiliarity and misapplication and will offer not only component control, but shortly the integration of all of these subsystems in the total vehicle control. Total vehicle control will be the ultimate result, when the driver, the truck and the environment are brought together. Such vehicles will be more responsive, safer and easier to drive than today's commercial vehicles and buses and offer a cost effective utilization of these new technologies to the customer.
Technical Paper

Worldwide Survey and Characterization of Commercial Marine Fuels

1987-07-01
871392
The quality and availability of distillate fuels in the coming decades has become an increasing concern to the U.S. Navy. In response, the Energy Research and Development Office of the David Taylor Naval Ship Research and Development Center (DTNSRDC) has conducted a worldwide survey of commercial marine fuels. An effort was made to obtain 50 commercial marine fuel samples from various suppliers worldwide. The purpose of the survey was to assess the current quality of available fuels by analytically characterizing each of the fuel samples obtained. This assessment consisted of the measurement of more than 44 fuel properties. This paper contains a summary of the analytical results which were obtained. In addition, the current analytical results are compared with refinery specifications, with the current Navy specification, and with the results of a similar survey conducted in 1983. Finally, the resulting conclusions and recommendations are presented.
Technical Paper

Worldwide Safety and Environmental Regulations

1980-04-01
800664
United States construction equipment manufacturers are subject to a maze of product-oriented regulations in marketing their U.S.-built products in foreign countries. These same obstacles face their foreign-built products. In the past, these foreign regulations were more apt to be trade barriers to protect domestic markets than bonafide regulations to protect the users. These trade barriers are gradually being lifted because manufacturers in virtually all countries have now expanded beyond their domestic markets. Thus, the same manufacturers that formerly encouraged trade barriers must now cope with them. This expansion of markets now encourages the elimination of trade barriers and the harmonization of regulations. For the future, regulations will be retained and expanded. They will, however, be harmonized with international voluntary standards rather than having different regulations for each country.
Technical Paper

World Trucks - A European View

1989-08-01
891630
The idea of a world truck is a fascinating challenge - whereas cars are purchased more or less as seen; truck purchasers demand more individual configurations. In national and global terms, that means a highly complex truck market. Historically, a few European and North American manufacturers produced almost all the trucks for the world market. That changed through the 60's and 70's, with more local assembly plants around the world and increasing worldwide manufacturing capabilities. Concurrently, international component design standards have made some progress towards compatibility. Much greater co-operation is needed, however, before a genuinely international set of standards can be applied. As the task assigned to trucks is the same worldwide, namely to transport goods from A to B; it should be desirable and possible to work towards a greater commonality of vehicle - to ultimately achieve a world truck. The only unknown is the time scale.
Technical Paper

World Class Quality in Heavy Duty Truck Wiring

1988-10-01
881832
Standardization and “Zero-Defects” are buzz-words among today's truck manufacturers. Electrical components is an area where these words must become reality. Components costing less than 1% of the final truck price should not cause problems for the end user or the manufacturer. The way to insure this is communication and design. Design out problems with new components.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2018-11-21
CURRENT
J1614_201811
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Technical Paper

Winterization Of Construction Equipment - Report of CIMTC Subcommittee XV—Winterization

1957-01-01
570031
SINCE 1954 the CIMTC Subcommittee has been engaged in a program to meet military requirements through industry's production of construction equipment which can give satisfactory cold weather performance down to temperatures of −65 F. Individual contracts for three crawler tractors and one motor grader were negotiated by ERDL for these projects, and their performance is discussed. Industry participation was subsequently expanded to include engineering tests in the cold weather conditions of the Mesabi Iron Range. This joint report of the Winterization Sub-committee of the CIMTC and ERDL Winterization Section consists of separate papers by various members and consultants of this Sub-committee and ERDL personnel.
Technical Paper

Wind-Averaged Drag Determination for Heavy-Duty Vehicles Using On-Road Constant-Speed Torque Tests

2016-09-27
2016-01-8153
To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
Journal Article

Wind Tunnel and Track Tests of Class 8 Tractors Pulling Single and Tandem Trailers Fitted with Side Skirts and Boat-tails

2012-04-16
2012-01-0104
A 1:10-scale wind tunnel development program was undertaken by the National Research Council of Canada and Airshield Inc. in 1994 to develop trailer side skirts that would reduce the aerodynamic drag of single and tandem trailers. Additionally, a second wind tunnel program was performed by the NRC to evaluate the fuel-saving performance of boat-tail panels when used in conjunction with the skirt-equipped single and tandem trailers. Side skirts on tandem, 8.2-m-long trailers (all model dimensions converted to full scale) were found to reduce the wind-averaged drag coefficient at 105 km/h (65 mi/h) by 0.0758. The front pair of skirts alone produced 75% of the total drag reduction from both sets of skirts and the rear pair alone produced 40% of that from both pairs. The sum of the drag reductions from front and rear skirts separately was 115% of that when both sets were fitted, suggesting an interaction between both.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

2005-11-01
2005-01-3527
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Technical Paper

Wind Tunnel Concepts for Testing Heavy Trucks

2016-09-27
2016-01-8144
The trucking industry is being encouraged by environmental and cost factors to improve fuel efficiency. One factor that affects fuel efficiency is the aerodynamic design of the vehicles; that is, the vehicles with lower aerodynamic drag will get better mileage, reducing carbon emissions and reducing costs through lower fuel usage. A significant tool towards developing vehicles with lower drag is the wind tunnel. The automobile industry has made great improvements in fuel efficiency by using wind tunnels to determine the best designs to achieve lower drag. Those wind tunnels are not optimum for testing the larger, longer heavy trucks since the wind tunnels are smaller than needed. The estimated costs for a heavy truck wind tunnel based on automotive wind tunnel technology are quite high. A potential nozzle concept to reduce wind tunnel cost and several other new possible approaches to lower wind tunnel costs are presented.
Technical Paper

Why You Should Use Web Based Learning for CAD Training in Your Organization

2013-09-24
2013-01-2439
Since 1992, Caterpillar has invested millions of dollars to purchase CAD software, and spends nearly $2M per year keeping its engineers up-to-date, via instructor lead training (ILT), as new enhancements are introduced. Periodic upgrades to the software also require huge resource (people, costs) commitments for the planning and execution of the training requirements required for a large global workforce. This paper will examine gaps uncovered in the efficiency and effectiveness of the current training process, and the cultural change required as a result of switching from an instructor led environment to a completely web-based solution, which, once deployed, had promised to change the way Caterpillar approached training for the future. The proposed change promised to improve human resource capability by utilizing new technological capabilities, and resulted in improvements in organizational capabilities as well.
X