Refine Your Search


Search Results

Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

Production and continual improvement of safe and reliable products is key in the aviation, space and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction. The IAQG has established and deployed the AS9145 Standard, as a step to help achieve these objectives.
Training / Education

Aircraft Virtual Flight Testing and Certification in Off-nominal Multifactorial Situations

The behavior of a 'pilot-automaton-aircraft-operating environment' system (the System) in off-nominal situations with multiple risks can be unpredictably dangerous. Most multifactorial flight scenarios (corner cases) are considered as theoretically improbable. Such anomalies do nonetheless occur in operations and can lead to inconceivable accidents - 'black swan' events.
Technical Paper

Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast Environment

During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent.

Automatic Target Recognition, Third Edition

This third edition of Automatic Target Recognition provides a roadmap for breakthrough ATR designs―with increased intelligence, performance, and autonomy. Clear distinctions are made between military problems and comparable commercial deep-learning problems. These considerations need to be understood by ATR engineers working in the defense industry as well as by their government customers. A reference design is provided for a next-generation ATR that can continuously learn from and adapt to its environment. The convergence of diverse forms of data on a single platform supports new capabilities and improved performance. This third edition broadens the notion of ATR to multisensor fusion. Radical continuous-learning ATR architectures, better integration of data sources, well-packaged sensors, and low-power teraflop chips will enable transformative military designs.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.

Counterfeit Parts and Their Impact on the Supply Chain, Second Edition

Why should the supply chain be concerned if their buyers or subcontractors are purchasing counterfeit electronic parts or if their products contain counterfeit electronic parts? If these parts end up in items that are safety critical and security-risk sensitive such as aviation, space, and defense products, whole secure systems can be comprised. As organizations have become aware of counterfeit parts, one of their responses may be to test upon acceptance or prior to receipt. But testing alone may not detect all counterfeits. Possible sources of counterfeits include products that did not meet quality control requirements and were not destroyed, overruns sold into the market place, unauthorized production shifts, theft, and e-waste. The counterfeited electronic part ends up in the supply chain when ordered by an unsuspecting buyer, who does not confirm the originating source of the part.
Training / Education

Emotional Intelligence for the Engineer

Are you educated and trained as an engineer, but looking to develop your interpersonal and management skills? To be successful and considered for future opportunities in your company, you should possess interpersonal and intrapersonal competencies to communicate well with others. Do you want to relate better to your managers and staff and develop better working relationships with your peers and colleagues? This seminar is intended to introduce skills and techniques on emotional intelligence to engineers at all levels of the organization. It will help you to comfortably and confidently communicate with others, fostering win-win relationships.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Training / Education

Fundamentals of Metrology and Quality

Metrology is an important component in manufacturing because it provides a rigorous method for Quality personnel to manage risk and uncertainty.  To mitigate risk successfully and develop techniques for problem solving, it is important to evaluate sources of uncertainty, verification, and non-conformance.   This seminar is intended to introduce the various principles associated with uncertainty of measurement; to explore the history of measurement, and to clearly identify calibration, true values, errors, uncertainty, traceability, random and systematic effects, repeatability and reproducibility. 
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Training / Education

Integrated Navigation for Versatility and Robustness Addressing our Navigation and Tracking Challenges

The course material covered, begins with fundamentals of navigation for versatility and robustness, showing intuitive connections of mathematics to physical examples, followed by a natural transition to advanced topics. Addressing navigation and tracking challenges, practical realities are given top priority, by delivering maximum effectiveness from simplest permissible representations. This course will enable designers to extract maximum benefit from available sensors, however extravagant or austere they may be, at every instant of time throughout a mission. 
Training / Education

Introduction to the Secure Microkernel, seL4

Security continues to be an ever-growing concern in more and more design spaces. There are daily articles about security breaches and there is a need for much higher security through the entire system stack. Thorough testing of systems can lead to stronger security in systems, but testing can only expose so many vulnerabilities. Formal methods is another solution that ensures specific behaviors will not occur. seL4 is the first formally proven microkernel and it is open-source. This makes it a great solution for systems that need strong security.
Technical Paper

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles

The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.

S400 Copper Media Interface Characteristics Over Extended Distances

This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
Technical Paper

Simultaneous Design and Control Optimization of a Series Hybrid Military Truck

This paper investigates the fuel saving potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the Lithium-ion battery pack in the hybridized configuration. On the other hand, the powertrain supervisory control optimization finds the most efficient way to split power demands between the battery pack and the engine. Most of the previous literatures implement them separately. In contrast, combining the sizing and energy management problem into a single optimization problem produces the global optimal solution. This study proposes a novel unified framework to couple Genetic Algorithm (GA) with Pontryagin’s Minimum Principle (PMP) to determine the battery pack sizing and the power split control sequence simultaneously.

Standard Practice for Human Systems Integration

This Human Systems Integration (HSI) Standard Practice identifies the Department of Defense (DoD) approach to conducting HSI programs as part of procurement activities. This Standard covers HSI processes throughout design, development, test, production, use, and disposal. Depending on contract phase and/or complexity of the program, tailoring should be applied. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered in the DoD HSI Handbook. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is specifically cited in the contract.